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SECTION I

INTRODUCTION

Navy prototype training systems are being developed
that utilize computer speech recognition technology to
capture the voice behavior of trainees. These voice-based
training systems have been interfaced with standard
technologies for teaching and performance assessment. The
purpose of the current project has been to examine the
possibility of enhancing the pedagogical potential of these
training systems through the application of Artificial
Intelligence (AI) theory and technology, as well as current
developments in psychological theory.

Research in AI is dedicated to the development of
technologies that give computers capabilities to behave in a
fashion representative of human intelligence. The
pedagogical potential of Navy instructors and training
systems might be greatly enhanced if a computer-aided
training system can be developed that can emulate the
intelligent behavior of Navy instructors. The burden of
routine training decisions could be shifted to a computer
resident automated instructor (CRAI).at In addition, human
instructors aided by a CRAI might be aIeto provide a level
of individualized training which manpower limitations and
task complexity might prohibit human instruc ~s alone from
providing. -

Chatfield, Marshall & Gidcumb (1979) reviewed recent
developments in intelligent knowledge-based training systems
as well as basic research in cognitive processes and the
representation of knowledge. The review yielded a
determination of several necessary characteristics of a
training instructor and subsequently a generic model of a
CRAI. Section II presents a brief reiteration of key
elements of that report and reviews some more recent
relevant research. The purpose of Section II is to provide
a factual foundation for those readers who are new to this
subject area.

Briefly, the necessary components of a CRAI, as
described in Chatfield et al. (1979), included a knowledge
base in which procedural as well as factual knowledge would
be represented; a model of the student which would
incorporate a representation of the student's evolution from
novice to expert in both knowledge and processing skill;
performance measurement or monitor component; a diagnostic

9
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component capable of deducing the state of covert student
processing and knowledge levels from overt student behavior;
and a curriculum driver that could use the student model to
determine the "tutorial" function or adaptive task scenario
that would optimize the student's learning. In addition, it
was noted that a natural language interface would be useful
in providing the student with a means for initiating
information inquiries, in allowing the system to refine its
diagnosis of student problems by interrogating the student,
and provide the human instructor with convenient access to
the system's data base on student performance and its
pedagogical rationale.

In the current effort, we have sought to extend the
preliminary design outlined in Chatfield et al. (1979), to
identify Al technologies that would facilitate the
implementation of a real world CRAI in a voice-based
training system, and to provide representative examples of
those technologies. Chatfield et al. (1979) noted that a
gap exists between basic research and the product-oriented
applications. We have attempted to help bridge that gap.
To that end, we have developed implementation ideas
concerning currently available theory and technology within
the constraints, as we see them, presented by voiced-based
training systems.

Section III briefly introduces some of the concepts in
Al and relates them to some of the more traditional
terminology found in psychology.

Section IV describes our symbolic generic trainer
called INSTRUCT (for Intelligent Nascent Simulated Trainer
for Research on Utterance Capability Trainers). INSTRUCT is
an implementation of our CRAI ideas and is a testbed for
those ideas. The systemr includes a simulated student to
interact with the CRAI in the training of a task that is a
simplified representation of the speech-based tasks in
current Navy training systems development programs.
INSTRUCT has been designed to demonstrate only the
feasibility of applying key concepts within Al and
psychology.

Westcourt, Beard, Gould, and Barr (1977) presented a
detailed discussion of the use of several simulation
techniques for the evaluation of computer-aided instruction
systems. From their perspective, INSTRUCT is an automated
simulation that uses a student simulation which is a
theoretical model of student performance. With such a

10
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technique, it becomes possible to examine interactions
between the CRAI and the student, which are difficult to
anticipate. It also becomes possible to examine the
adequacy of the CRAI's rules for inferring a student's
knowledge from overt behavior. In particular, it becomes
possible to compare the CRAI's model of the student with the
actual covert state of the student during training because
the experimenter has access to the program parameters that
represent that covert state.

Westcourt et al. (1977) also highlight the limitations
of evaluations with some types of student simulations. One
type of student simulation presents the CRAI with a
theoretically based model of the student that is an overlay
of an expert model, i.e., the student is an expert with some
of the knowledge or skills missing. This method can discern
the CRAI's ability to infer covert knowledge states, but it
can not assess the pedagogical effectiveness of the CRAI
because the simulated student doesn't learn and improve its
performance. Another type of simulation is to use an
empirically derived statistical model of student learning
and performance. This model would describe the likelihood
(1) that the student learns new facts and skills as a result
of the CRAI's behavior, and (2) given that it does, its
behavior is such that the CRAI can discern the new learning.
This technique solves the pedagogical effectiveness problem,
but it implies that in order to use the simulation, the CRAI
system already must have been used by real students.

We have taken another course. INSTRUCT's simulated
student represents not only a theoretical model of human
task performance, but also a theoretical model of human task
learning. These theoretical underpinnings are based on
empirical research in psypchology on human learning and
cognition (briefly reviewed in Section II).

In addition to eliminating the limitations of the
simulation techniques above, the construction of the
simulated student allowed us to examine the application of
AI techniques to modeling student behavior. This experience
enhanced our design of the CRAI's knowledge base, in
particular its student model.

Granted, INSTRUCT's simulated student is a much
simplified model of human cognition. However, our goal was
not to test a full scale training system, but to examine the
logical sufficiency of representative AI techniques in their
application to training. To this end, the sufficiency

11
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criterion would be fulfilled if the CRAI could infer the
covert cognitive states of this representative student model
or display sensitivity to variations between parametrically
different simulated students. Section V presents the
results of our tests with INSTRUCT. We believe the results
support the sufficiency of the AI techniques.

1
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SECTION II

CHARACTERISTICS OF A VOICE BASED
TRAINING ENVIRONMENT

This section reviews the analyses and theories that
provided the rationale for our design of INSTRUCT. This
information comes from three sources: Chatfield et
al. (1979), the literature they reviewed and more recent
work. Our objective is to provide the reader with a
framework through which to understand the reasons behind our
implementation ideas and decisions in the creation of
INSTRUCT. Thus we will keep this review somewhat general.
We refer the reader to the original literature for greater
detail.

INSTRUCT is a simulation of a complete, albeit
simplified, voice-based training system environment. This
includes the simulation of a training task, a student to be
trained, as well as a CRAI. Therefore, our first task was
to extract the essential features of an exemplary task, the
student's cognitive processes, and the student's overt
behavior which we wanted to simulate.

ESSENTIAL TASK FEATURES

Chatfield et al. (1979) examined three exemplary
speech-based tasks, i.e., tasks in which verbal responses
are a major portion of the task behavior: Ground Controlled
Approach Radar Controller, Landing Signal Officer, and Air
Intercept Controller. These tasks are prime candidates for
the development of voice-based automated trainers. However,
there are a number of essential features which also may be
found in non-speech based tasks. Training system
development for such tasks may benefit from spin-offs of
artificially intelligent voice-based training systems
development.

First, each task is cognitively complex. These tasks
require the operator to deal with a variety of informational
inputs concurrently. Operators may have to attend to
complex visual displays with a number of different channels
of information as well as auditory input. In addition
operators may be required to perform motor as well as verbal
responses. The verbal response mode physically frees the
operator to apply motor responses to other output channels.
However, the time it takes to make a verbal response is

13
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relatively slow and improvement is limited by the physical
realities of intelligibility. Therefore, there will always
be some degree of concurrence between verbal responses and
other events requiring attention, regardless of training.
Where training will affect ability is on the cognitive
requisites for making the response. We will return to this
topic in our review of essential student features later in
this section.

Second, each of these tasks is "event-driven." The
pace of the task is controlled by external events. The
operator must continually respond to changes in the task
environment which are occurring in real-time. If events are
not responded to quickly they may disappear or become
erroneously out-of-date.

Third, the real-world event-driven rate is beyond the
novice operator's capabilities. The heart of the expert
operator's skills is the ability to process information from
a complex display, select and execute responses seemingly in
parallel. The ability to perform these tasks at a rapid
pace is the major difference between the novice, and the
highly skilled expert operator. Hooks, Butler, Gullen, and
Peterson (1978) reports that the major determinor of an
LSO's ability is the capability to perform under a seemingly
cognitive overload situation without getting confused.

One feature which is specific to the speech-based task,
is the current limitations on response monitoring inherent
in voice-recognition systems. Robinson (1979a, 1979b)
reviewed the current state of the art in voice recognition
technology. The best isolated word recognition systems can
correctly identify words with an accuracy of 98 to 99
percent in controlled laboratory settings for vocabularies
up to 100 words. However, in the field correct
identification can slip to 50 percent or less. Much of the
error consists of the machine being unable to identify a

- word. In many environments, the machine will request a
" repeat speech sample rather than misidentify a word.

Obviously in an event-driven task environment such
interruptions would prove deleterious to the task's fidelity
to the real-world and to the student's progress. From
experience with such interruptions on a current trainer
prototypes, one of the current authors can personally atest
to the frustration such interruptions invoke.

14
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Robinson (1979a) notes a number of sources for the
error. First, there is noise. The machines tend to be
sensitive both to background noise and the placement of the
microphone. Another is the need for speech samples of
exemplar responses to be taken by the machine. The user
must repeat each word in the vocabulary often from five to
ten times to the machine so that it can generate reference
patterns. If, during an actual practice session, the user
significantly changes the way he/she talks, the machine will
botch an identification. Part of this last problem stems
from the fact that people will often pronounce a word
differently in isolation as opposed to during the training
task. This problem becomes particularly acute when the
student is under high cognitive load. As will be discussed
in the next subsection, a high cognitive load will increase
the probability that a student will miss-phrase an advisory
or that his/her speech will become slow or degraded.

ESSENTIAL STUDENT FEATURES

The cognitive phenomena which underlie the difference
. in performance between novice and expert, and the phenomena

which yield the evolution of the novice into an expert are
of course at the core of the training effort. We turn to
psychological theory for a description of these phenomena
which are manifestations of the essential cognitive features
of the student.

PROCESSING LIMITATIONS. The psychological literature
suggests that the novice's difficulty may be traced to a
limited central processing capacity. The concept of
processing capacity has important implications for
event-driven task training environments. It suggests that
the source of student errors often may not be due to any
lack of knowledge or misunderstanding of the subject matter,
i.e., knowledge structure problems. Instead errors may be
caused by difficulties in applying that knowledge, i.e., in
cognitive processing. In our discussion of processing
stages, later in this section, we will return to this
distinction between process vs. structure and discuss why
the pedagogical strategy applied to structure problems
should be quite different than that applied to process
problems.

15
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The concept of limited processing capacity can be
traced back to the attention literature of the 1950's and
1960's. The models proposed by Broadbent (1958) and
Treisman (1960), for example, hypothesized that the source
of the capacity limitation was in the attention stage of
information processing.

More recent theories have attributed the capacity
*bottleneck to more general cognitive limitations. Kahneman

(1973) proposed a resource competition model that assumed
all cognitive tasks draw from the same pool of limited
resources. Thus, if a particular task demands a large share
of the resources, there are few left for other concurrent
tasks. Kahneman viewed cognitive resources as a pool; of
effort" which may be allocated among tasks.

Norman and Bobrow (1975) suggested that there may be
two sources of processing limitation. Whenever the
performance on a task can be increased with an increased
allocation of resources (e.g., processing effort, or
concentration), then the task is said to be
resource-limited. Whenever the performance level remains
invariant to increased allocations of processing resources,
the task is said to be data-limited. Data-limitation can
stem from two sources: external poor signal quality (e.g.,
low signal-to-noise ratio) called Signal data-limits; or an
inadequately stored internal memory representation called
Memory data-limits.

The point at which a particular task changes from
resource-limited to data-limited may change with the task.
The performance-resource functions for two tasks are
illustrated in Figure 1. In this example, Task I becomes
data-limited when resource allocation for that task reaches
point B. Task II becomes data-limited only when resource
allocation reaches just past point C. Assuming a constant
resource limit, any increase in resource allocation to one
task would mean a subsequent decrease in allocation to the
other. Consider the situation where a student has allocated
C resources to each task. If the actor increases the
allocation to Task II to point D then the allocation to Task
I must be subsequently decreased to point B. Given the
functions in Figure 1, it can be seen that there would be no
change in performance on either task. However, if we
reverse the reallocation we find that performance on Task I
still does not change but Task II performance declines.

1

16



NAVTRAEQUIPCEN 80-C-0061-1

TASK I

TASK II

A B C D HIGH
RESOURCE ALLOCATION

Figure 1. Two example resource
allocation functions.

The change from resource to data-limitation may also be
a function of task training. Norman and Bobrow explain that

.4 with practice, the students may learn to become more
efficient in their processing. This increase in efficiency
is graphically illustrated as a change in the
performance-resource function for a given task in Figure 2.
With learning the student approaches the data-limit
asymptote more rapidly as resources allocations are
increased. The figure illustrates that for a given
performance level of a given task the expert may simply have
a lot of resource capacity in reserve relative to the
novice. Thus, the expert would have a greater capability to
perform additional tasks. Note that even for the expert
that capability is limited by the performance-resource

4 function of each task. The greater the resource efficiency
on each task the greater the number of tasks which can be
handled.

17
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Expert

0

RESOURCE ALLOCATION

Figure 2. Changes in the resource
allocation functions in
various stages of
training A through f.

Navon and Gopher (1979) proposed an important extension
of Norman and Bobrow's theory. They proposed a theory of
resource allocation based on concepts from microeconomics.
According to the theory, when the composite demand of two
conjoint tasks exceeds the resources available, the student
must decide how to allocate the insufficient resources among
the two tasks in such a way as to maximize his/her
subjective utility relative to the joint performance. There
may be a number of different performance mixes that will
satisfy a given level of utility. This set of mixes would
be described by an "indifference curve" or "equal utility
contours." The importance of the indifference curves for
the development of training systems is that they can be
manipulated by the instructor (Chatfield et al., 1979).

Chatfield et al. (1979) noted that learning rate is
also positively related to the amount of resources invested,
and suggested the concept of a resource

allocation-acquisition function as shown in Figure 3. The
figure illustrates that the momentary learning rate is a

18
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function of the amount of resources allocated. From this
perspective, the rate at which a task is mastered could be
altered by manipulating the resources allocated. This
manipulation could be accomplished by task priorities given
by the instructor, or most directly by simply eliminating
those informational inputs (e.g., blanking parts of a
display screen) the instructor ,ishes ignored.

"-4

Resources Allocated

Figure 3. Exemplar resource
allocation-acquisition
function.

The resource allocation-acquisition function concept
was empirically supported by Gopher and North (1977).
Furthermore, the concept and a set of techniques for
scheduling student resource allocation for optimal
acquisition was suggested by Chant and Atkinson (1973) and
is discussed by Chatfield and Gidcumb (1977). An important
concept borrowed from economics by Chant and Atkinson (1973)
is the turnpike solution. Briefly, the theory suggests that
the quickest route to task acquisition may not be the most
direct. For example, it may be better to train Task A in
isolation, then add Task B giving it a relatively high
priority, followed by a final short period of training with

19



-. - * . .. . -. A< i

NAVTRAEQUIPCEN 80-C-0061-1

equal priorities, than simply training the student under
equal priorities from the beginning. This control process
could be extended to the decision of when to add a third
task. In Section IV we will discuss our current findings
resulting from a simulation study of the turnpike solution.

These considerations concerning processing limitations
would suggest that an important function of a CRAI would be
resource allocation scheduling. To this end, an important
function of'\ the CRAI's diagnostic routines would be to
analyze overt\, student behavior to determine optimal
scheduling. 'be results of our current implementation of
this function ar6 presented in Section V.

PROCESSING STAGES. Chatfield et al. (1979) reports a
resurgence of interest in stage theoretical approaches to
the information processing problem. These approaches
propose that processing takes place in discrete and
independent functional stages. In addition, these stages

*: are generally considered to be successive in nature. There
* is some disagreement on the nature of this succession.

Sternberg (1969) proposed that only one component process
may be active at any one time, a concept referred to as the
discrete stage model. McClelland (1979) assumes that all
components of a processing system operate continually, but
pass information from one process to the next as it becomes
available. This construction is called the cascade model.
However, all of the stage theoretical approaches are
congruent with the proposition that the reaction time of a
response may be decomposed and attributed to a set of
individual subprocesses (Sternberg, 1969).

Encoding or Perceptual Stage. Chatfield et al. (1979)
defined encoding as the process by which the raw stimulus
data is transformed (or coded) into a form representative of
an item in memory. LaBerge (1973) assumes a parallel
hierarchical model in which the sensory input is first
analyzed by feature detectors. The results of the analysis
by feature detectors is then organized into codes (e.g.,
letters). The codes are further organized into higher level

* codes (e.g., words, responses etc.). Chatfield et
al. (1979) suggested these hierarchies could be viewed as

* the schemata described by Neisser (1976). Neisser (1976)
defines a schema as "that portion of the entire perceptual
cycle which is internal to the perceiver, modifiable by
experience, and somehow specific to what is being perceived.
The schema accepts information as it becomes availablp at
sensory surfaces and is changed by that information; it

20
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directs movements and exploratory activities that make more
information available, by which it is further modified." In
other words, the hierarchy may be activated not only from
the bottom-up via the sensory input, but also may be
activated top-down via the memory system, i.e., via
anticipation.

Mental Computation Stage. Once the raw stimulus data is
transformed into a memory form, the next stage is to use
that data to perform some task. Basic research has examined
the task of search and comparison. In the classic
experimental paradigm, the experimenter presents a series of
characters to the subject, one at a time. The subject is to
check each one and indicate whether the character is a
member of a predesignated set. Work by Sternberg (1966),
Schneider and Shiffrin (1977) and Briggs and Johnsen (1973)
indicates that the search and comparison process is serial
in nature. Schneider and Shiffrin (1977) also found that
accelerating the pace of the character presentation
interrupts the process and reduces accuracy. Furthermore,
the effect of presentation rate interacts with the
complexity of the display and predesignated comparison set.

Evidence, from both Briggs and Johnsen (1973) and
Schneider and Shiffrin (1977), indicates that extensive
training can reduce the effects of display and comparison
set complexity. Training also decreases the effect of
display pace.

Norman and Shallice (1980) have recently interpreted
this effect of training in terms of their theory of "willed
and automatic control of behavior." Their theory is based
on the concept of sets of "active" schemata. These schemata
are organized according to the particular action sequences
of which they are a part. When the appropriate set of
conditions occur, the schemata become selected to control
action. Any given action sequence that has been
well-learned is represented by an organized set of schemata.
A single source schema serves as the highest order control.
Other component-schemata of an action sequence can be
activated via the source.

According to the theory there are three different
states of a schema. The schema is normally dormant, i.e.,
it resides in memory but plays no role in the current active
processing. A schema is activated when it is "set up,
brought to a state of readiness and given an activation
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value." The activation value is a function of several
factors: a given value from the source schema, attentional
and motivation factors, the influence of other activated
schemata, and the degree to which designated schema trigger
requirements match the conditions of the environment. A
schema is selected when its activation value exceeds its
designated threshold.

From the theory's perspective, newly learned actions
are apt to be ill-specified. Their schemata are relatively
small, encompassing relatively specialized subactions. In
addition, their triggering requirements are apt to be
ill-specified: not well matched to the actual conditions
that occur. The result of these deficiencies is that
continual monitoring is required by attentional mechanisms,
and selection must often be forced or delayed by the
application of deliberate attentional activation. On the
other hand, well-learned actions are apt to be well
specified, with their schemata encompassing large, organized
units of behavior. Their triggering requirements are likely
to be well-matched to the environmental conditions. These
schema can maintain control effectively for longer periods
without attentional control.

Process vs. Structure. Earlier, we indicated the need for
a distinction between process and structure. The state of
the art is such that a rigid delineation between the two
concepts is not always possible. However, in general, we
will take structure to refer to the internal organization of
units of a knowledge domain. As an example, in the memory
search tasks of Sternberg's, the list of items in memory
through which the subject must search, constitutes a simple
structure. The search activity itself would be an example
of what we will refer to as process.

Process. The process/structure distinction suggests that
student problems may arise in either element, and that the

type of instructional remedy applied should be dependent on
which element is the source of the problem. Student
problems which are precipitated by processing deficiencies
can be attributed to resource-limitations. Therefore, an
appropriate strategy would he to manipulate the student's
resource allocations. keallocating more resources to the
problem process will increase performance and positively
alter the performance-resource function (i.e., increase the
integral of the function), by increasing the student's
momentary acquistion rate.
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However, if problems are due to structural
deficiencies, the increases in resource allocations will not
help performance, i.e., the problem can be attributed to
data-limitations, specifically memory data-limitations.
Reallocation under data-limitations would be wasteful by
reducing resources allocated to other processes that need
the enhancement and reallocating them to a process which may
not. If a process is memory data-limited this factor would
mask information about the state of its resource
limitations. This masking highlights the fact that process
and structure are not orthogonal. Just as a craftsman is
limited by the quality of his tools, so the efficiency of a
process is limited by the quality of its data structure.
Therefore, if a student problem is attributable to
data-limitations an appropriate strategy would be to

determine the missing or erroneous portion of the data
structure (perhaps by natural language query), then rectify
the problem through factual tutorials.

We have noted that processing becomes more efficient
with extensive practice. It is not clear, whether changes
in process or structure underly this increased efficiency.
Norman and Shallice (1980) appear to suggest that a change
in the processing sequence occurs, i.e., it becomes better
specified. However, efficiency might be mitigated by an
increase in processing speed, or perhaps a streamlining of
the data structure. For example, if a task required
locating a target word in a list of words, efficiency might
be increased with practice simply by increasing the speed of
scanning the list. However, if the structure of the list is
mutable, as is human memory, efficiency might be increased
by gradually alphabetizing the list.

Structure. There has been much research effort towards
discerning the nature of internal representation and memory
structure. We have briefly discussed the concept of schema
from a processing perspective; we have discussed the
craftsman's hammer in terms of what it does, let us now
describe the hammer. The term schema is used in various
ways by several authors, but the common theme is that a
schema is a segment of knowledge organized around a central
concept (Chatfield et al., 1979). An example of a schema in
its simplest form would be the frame-like notation presented
by Minsky (1975) for representing knowledge in a computer.
Here a frame is a description of an object, or action, which
incorporates all the invariant features common to instances
which would be classed as an example of the particular
object or action.
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Of present interest regarding the training of
voiced-based tasks, is the relation between schemata and

*- resource consuming events. In an event-driven situation an

input generates a description which must be compared with
potential schemata. Early in training this search and
comparison process consumes both time and resources. If a

*quick match is found, the input is fit into a context which
may provide further input to a higher level schema or may
lead directly to a response. Thus, mismatches would be one
cause for resource and time consumption. This highlights
the need for developing in the student adequate schematic
descriptions and prototypes during training.

Rumelhart and Norman (1976) and Norman (1978) suggest
that the formation of schemata occur in three overlapping
stages. During the first stage the instructional system is
adding to the underlying data base of the learner. When the
existing schemata cannot handle the new knowledge, the
schemata themselves may be reorganized; this is the second
stage. Of special interest is the third stage of "fine
tuning." The schemata undergo additional minor changes, and
the processing associated with the schemata undergoing
tuning becomes streamlined, and more efficient.

Newell and Simon (1972) also indicates that the
S"knowledge structure changes with practice. They report, for

*example that expert chess players can remember more chess
pieces for a given b, ard pattern in a given amount of time
than can novices. However, it appears that experts process
the same number of information "chunks" as do novices. The
difference is that novices' chunks may include only single
pieces; the experts' chunks include familiar patterns of
several pieces. This merging of single informational
elements into patterns of elements comes with extensive

*experience with those patterns.

A more recent position on the automatization of
cognitive skills is given by Neves and Anderson (1981). The
authors attempted to explain the mechanisms by which people
accelerate in processing with practice, as opposed to simply
describing the conditions under which it occurs. They
propose the acceleration is due to the mechanisms of
proceduralization and composition. They assert that
knowledge is initially represented as a set of propositions
in a semantic net, from which production rules may be built.
The cognitive system, during practice creates faster
production rules automatically via the procedurization
mechanism. The composition mechanism forms larger units out
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of the individual productions. This results in an automatic
acceleration, parallel search abilities, and an inability to
adequately introspect on these well-learned procedures.

SUMMARY. In summary the evolution of a novice into an
expert may involve qualitative and quantitative changes in
cognitive processes as well as memory data-structures. We
know that processing becomes more efficient with extensive
training. The psychological theory reviewed indicates ways
in which this change may be manifested by changes in
processing speed, the manner of processing, and the
data-structure in which processing takes place. Also
outlined were the effects of manipulating students' resource
allocation, and the need for differential training
strategies regarding processing vs. structure based student
problems.

ESSENTIAL FEATURES OF STUDENT BEHAVIOR ON EVENT-DRIVEN
TASKS

Chatfield et al. (1979) described thk Lcypical errors of
students working on a simplified Precision Approach Radar
(PAR) display (only azimuth cursor was displayed). From the
perspective outlined in this section (and in more detail in
Chatfield et al., 1979), the vast majority of these errors
would be indicative of processing limitations. For example,
longer than required pauses in speech might be caused by the
student not being able to speak and think concurrently. A
student's slow rate of processing causes him/her to fall
behind in the event-driven task which in turn causes the
student to miss making some of the calls. In addition, two
problems which may appear to be structural problems may in
fact be precipitated by processing limitations. These are
making a correct call with the wrong phraseology, and making
completely incorrect calls. It was proposed that the paced
nature of the task made students feel that they must respond
even though they felt "hurried" and did not have enough time
to fully process the response. In other words, the
insufficient time (i.e., the inability to allocate
sufficient resources in the time available), along with the
task demands, obligated the student to produce a response
which would be the product of incomplete processinr An
instructor's first thought, in observing that t'-e response
was incorrect in type or phraseology, might be to conclude
that the student needs remedial instruction on the rule
governing the production of the response. But it was
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observed by Chatfield et al. (1979) that if students were
asked what the correct response should have been, during a
pause in the action, they could report the correct response.
Hence, it would appear that the students possessed
sufficient knowledge structures with which to correctly
process the information, and could do so if they were not
rushed or distracted. Further evidence comes from the
students' comments: "There wasn't enough time," or, "Too
many things were happening at once."

As mentioned in Section I, we have attempted to avoid
the limitations of evaluation described by Westcourt et
al. (1977). To this end, we have incorporated into INSTRUCT
a simulated student which is a model of the essential
student features outlined in the previous subsection. It
was equally important that the simulated student emulate the
characteristic errors outlined in the current subsection.
Indeed, Newell and Simon (1972) suggest that the degree of
fidelity with which a simulation reproduces such overt
behavior can be considered evidence of the degree to which
the simulation model represents the covert processes
underlying the behavior. Our success in this regard is
reported in Section V.
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SECTION III

BACKGROUND CONCEPTS IN ARTIFICIAL INTELLIGENCE
AND PSYCHOLOGY

Within the last decade, new fields and disciplines have
been emerging which are bringing together researchers from
diverse fields such as psychology, computer science,
linguistics and philosophy. With the emergence of a new
discipline comes new energy, new approaches, new societies,
new journals, and, of course, new theories, concepts and
terminologies. The new fields of which we speak are of
course artificial intelligence (AI) and the new cognitive
science. Both began quite some time ago, but in recent
years have become more formalized. New journals have
appeared, such as Artificial Intelligence, Cognitive
Psychology, and more recently, the Cognitive Science
Society's new journal Cognitive Science. The approaches
reported in this paper emanate from the new fields and may
be unfamiliar to some of our readers. In this section we
will discuss some of the terminology and relate the terms to
some of the more traditional terms found in psychology. The
terms will be only briefly introduced, however, and the
reader will have to consult some of the newer textbooks for
more comprehensive discussions. Throughout the paper,
numerous sources will be cited which would be good
references.

Artificial intelligence has been described as "the
study of ideas which enable computers to do the things that
make people seem intelligent" (Winston, 1977, pg. 1). It
might then be asked, "What is it that makes humans
intelligent?" Moreover, "What is intelligence or thought?"
In the past, traditional psychology, laboring under its
heritage of S-R associationism, had focused on a fairly
narrow set of definitions of learning, memory perception and
problem solving. In the past decade or two, thesc
traditions have been broken, leading to a new revitalized
rise in cognitive psychology which was once seen as having
been stamped out by behaviorism. With contributions from
the cognitive psychology movement, AI, linguistics, and
philosophy, the new cognitive science has emerged. Simon
(1981) believes that the trend started in 1956 with Miller's
(1956) information processing, Chomsky's (1956)
transformational grammars and Bruner, Goodnow, and Austin's
(1956) work on thinking. This new science of cognition has
been called a science of the mind, of intelligence, of
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thought; a science concerned with knowledge and its uses.
To put it in the words of Norman (1981):

Cognitive Science is the search for the
understanding of cognition, be it real or
abstract, human or machine. The goal is to
understand the principles of intelligent,
cognitive behavior. The hope is that this
will lead to better understanding of the human
mind, of teaching and learning, of mental
abilities, and of the development of
intelligent devices that can augment human
capabilities in important and constructive
ways. (pg. 1)

The division between cognitive science, AI, and
cognitive psychology is quite blurred as they seem to be
blending and working toward common goals, differing only in
emphasis. Although our intent is to relate the terms in
cognitive psychology to those in AI, at times it is hard to
tell where one area ends and the other begins.

The scope of AI is somewhat hard to define. The
topical categories used at the first annual conference of
the American Association for Artificial Intelligence (AAAI)
held at Stanford University in August 1980, were essentially
the following: Vision, Theorem Proving, Problem Solving,
Knowledge Representation, Knowledge Acquisition, and Natural
Language. In a sense, these categories might be said to
represent the field, although some of the textbooks have
organized the field a little differently. Of the topics
listed, we will be concerned primarily with the last four in
our conceptualization of the CRAI.

KNOWLEDGE

The representation and acquisition of knowledge is
probably the most basic to all areas of cognition and AI.
Historically, psychology always has been interested in the
way people acquire knowledge, but it was the philosopher
that was interested in the nature of knowledge.

*,  Experimental psychologists were interested in people as
*. processors of information: the way they acquired knowledge

from information, the way they stored it and they way they
retrieved it. They hypothesized the existence of several

4 repositories of information, such as sensory memory,
short-term memory and long-term memory. In 1972, Endel
Tulving published Organization of Memory, proposing a
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distinction between episodic and semantic memory as
researchers were beginning to take a great interest in the
structural contents of memory and its relation to retrieval.
Reaction time was used as a dependent variable to reflect
the manner in which the material was organized. Collins and
Quillian (1969) put forth a network model of semantic memory
as did Anderson and Bower (1973), Kintsch (1974), and the
Active Structural Network model of Norman and Rumelhart
(1975). The network models, such as the Collins and
Quillian model, assume that information is hierarchically
organized such that each node, representing a concept, is
related to other nodes in a subordinate-superordinate
fashion as shown in Figure 4. With each node is a set of
properties which would characterize that node and all of its
subordinates. Important to our conceptualizations in
automated training was the idea that the traversing of the
network consumed time. Support for their work came from
experimental evidence in the form of reaction times.
Subjects were asked to verify propositions such as: "A
canary eats. True or false?"

has skin

<animal> can move
eats
breathes

- [ has wings
<bird> can fly

'has feathers

can sing [has long legs
<canary> tis yellow <Ostrich> is tall

tcan't fly

Figure 4. A portion of a semantic net
from Collins and Quillian (1969).
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During this period, the semantic net was being utilized
as a way of representing knowledge in an intelligent

- computer assisted instruction (ICAI) application by
- Carbonell (1970). The training system, called SCHOLAR,

represented declarative facts about geography as a semantic
network and offered a different form of validity for the
idea of a network model. Other network-based ICAI systems
are reviewed in Chatfield, et al. (1979).

Alternatives to the network models were the
set-theoretic models and the feature-comparison model. An
example of the first type was that of Meyer (1970) in which
knowledge consisted of a set of defining attributes. An
example of the latter model is given by Smith, Shoben and
Rips (1974) in which membership in a category is determined
by a set of defining features or attributes similar to the
set-theoretic models.

AI researchers during this period, also were interested
in organizing information for computing systems and were
using similar approaches. Minsky (1975) proposed his theory
of frames, bearing the influences of the semantic network
models.

To Minsky, a frame was a data-structure used to store
information that was typical of the situation or concept
which the frame was to represent. The data structure
contained terminals or slots which were to be filled with
the characteristics of the situation. Some of the slots
already were filled with things that were always true, while
others were empty and were filled by data when a particular
instance was being referenced (instantiation). The slots
themselves also contained a set of conditions required for
assignment of entries. One of the more powerful features of
frames was that the slots could be filled with default
assignments (things assumed to be true) which could be
easily replaced if additional data was forthcoming.
Individual frames were linked together into frame-systems,
which in turn were linked by an information-retrieval
network. Frames, then, are a convenient way of organizing

4 information about the world (domain) in which the
intelligent system is to function. Other knowledge
structures referred to are scripts, goals, and plans (see
Schank, & Abelson; 1975) and affective units.
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NATURAL LANGUAGE

One cannot functionally separate language from
knowledge in an intelligent system, yet we have become
accustomed to dividing broad fields into pedagogically
convenient groupings. Such a division is often made between
syntax and semantics. Syntax refers to the comparatively
local and superficial aspects of sentence structure whereas
semantics refers to more global and deeper concerns. Syntax
involves the rules for the sequencing of word units and,
together with morphology, constitute the more formal
grammars. The grammatical theories with which we would be
most familiar would be the phrase structure grammars and, of
course, Chomsky's transformational grammar. The
transformations refer to the changes that can be made on an
underlying string or sentence referred to as the kernel
string. It is in the syntactic analysis of strings that we
encounter parsers and augmented transition nets which we
will discuss in Section IV in relation to INSTRUCT's
interrogatory interface.

Language understanding comes with the study of
semantics. Munro (1975) refers to two basic approaches to
semantics: the structural approach of the LNR Research
Group and the approaches taken by generative semanticists.
This latter group is mainly responsible for the
decomposition of semantics into a set of primitives. Lakoff
(1970) is cited as the one who introduced the use of
"primitive" predicates. Other work in lexical
decomposition, and perhaps more widely used now, is the
conceptual dependency analysis of Schank, in which he
proposed a different set and number of primitives.
Reduction to a set of primitives is beneficial in reducing
the size of storage of the knowledge-base, since everything
could ostensibly be understood in terms of these few
primitive acts and in the handling of paraphrases. The LNR
Research Group, in contrast, has taken a propositional
approach. Here the parts of speech, other than verbs, are
represented as predicates.

PROBLEM SOLVING

Traditionally psychologists have used both the
associative and Gestalt approaches to problem solving, but
neither have been sufficiently comprehensive to serve as a
framework by which to understand problem solving. Most of
the progress has come through comparing human processing to
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that of the computer (see Hunt, 1971; and Newell & Simon,
1972). Problem solving is a complex and many-faceted
problem. Researchers in their limited scope have chosen to
highlight only limited facets at any one time. Of interest
to us are those areas relating to problem solving in AI and
the use of the computer as an expert system.

Human problem solving involves the encoding of
information, and the modification or transformation of that
information, and possibly some sort of necessary action.
The transformation of the information and subsequent
operations is likely to involve the retrieval of factual and
procedural information from long-term memory (LTM) as well
as the use of short-term memory (STM) as a working buffer.
Greeno (1973) divides the contents of LTM into two parts.
He makes a distinction between propositional knowledge and
algorithmic knowledge, with both categories being a part of
semantic memory.

Another approach to the study of problem solving is to
look at the set of algorithms or approaches humans bring to
bear. Psychologists were interested in the area because of
their interest in the "typical" non-optimizing or heuristic
approach used by people whereas those working with computers
were interested in optimizing the process to solve what the
human could not. It became apparent however that the
heuristic approach used by people, though inefficient or
suboptimal on a specific problem, was applicable to a great
range of problems. Additionally, the AI community was
interested in emulating human behavior as an end in itself.

The classic work in this area is Newell and Simon's
General Problem Solver (GPS). With this work and others
came a series of concepts and techniques that have since
been widely used. GPS had a particular strategy for solving
problems: the means-end.-analysis. Through the analysis of
the difference between a current state and the goal state,
GPS used a control regime by which operators were selected
which would reduce the observed difference. GPS broke the
ground with some concepts and techniques that have enjoyed
wide implementation since then. One implementation of GPS
is the STRIPS system developed at the Stanford Research
Institute. Other problem solving systems have been used in
various applications such as DENDRAL, and MYCIN.
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A number of principles have evolved in AI, which cut
across various applications and have their roots more in
computer science and mathematics than in psychology. For
that reason, we mention only a few of the more important
principles in passing. Most of the AI systems are organized
into three standard components: a global database, a set of
operations and a control system. Such is the case for a
computational formalism known as a production system. Here
the operations are a set of production rules directed by a
control system. Briefly, the production rules are if-then
rules which operate on the data base. The control regime is
a set of strategies by which certain production rules are
applied, such as difference reduction in means-end-analysis;
but in studying the path taken by the control regime's
selection of a sequence of production rules as it traverses
a network or tree structure, we are looking at search
methods. The various common search methods, such as, depth
first, breadth first, best first, hill climbing, branch and
bound, and the pruning techniques, are discussed in Winston
(1977) although a more thorough discussion can be found in
Nilsson (1980).

LISP

Most of the developments in AI have taken place in
environments with considerable computing power, and with
specialized languages. Although, as Fahlman (1981) points
out, good AI research has been on machines with hostile (to
AI) operating systems and in languages ranging from BASIC to
PL-l. As always, the most productive work gets done in the
most conducive and supportive environments. The languages
in use in AI development are all symbol manipulation
languages, such as SAIL, POP-2, LISP, and, of course, IPL,
which preceded them all, developed by Newell, Shaw and
Simon. LISP is the most widely used and serves as a
foundation for others, such as PLANNER, CONNIVER, and
PLASMA.

Because developments in AI are so intrinsically
involved with LISP, an overview of some of the terms would
not be complete without a brief discussion of the language
in which most of the AI concepts are implemented. Because
of our brevity, hiowever, there are several texts and manuals
which the reader may want to consult. We would recommend
Allen (1978), Siklossy (1976), Weissman (1967), and Winston
and Horn (1981).
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LISP is a symbol manipulation language derived from a
part of mathematical logic known as recursive function
theory. The acronym refers to "LISt Processing." There may
be some disagreement as to why LISP is so widely used, but
there seems to be little disagreement about its dominance
over the other languages. In fact, at the first AAAI
conference at Stanford, LISP seemed to have an overwhelming
number of advocates widely proclaiming its virtues (like
disciples). Winston and Horn (1981) cite four possible
reasons for its wide acceptance:

1. It has the convenience of being interactive.

2. It has the best in editing and debugging tools for
writing large, intelligent programs.

3. It possesses an optimal set of features for symbol
manipulation.

4. LISP functions can be used and treated as data. In
fact, one function can assemble another and use it.

It might be pointed out that the advantage of LISP is
primarily in the experimental development of AI techniques
and theory and not necessarily in application. Intelligent
programs, once developed in LISP, can be translated into
other languages for particular applications. Thus, LISP
grew up in academically-oriented environments with their

* considerable computing power and ability to create LISP to
conform to their needs. Fahlman (1981) gives a good survey
of the computing facilities that would be required for AI,
although it must be kept in mind that he speaks mostly for
AI research centers. Commercial users of certain AI

* techniques would undoubtedly have different requirements.
In reviewing the computer needs, Fahlman discusses the
time-sharing environments separately from the
personal-computing options. If working within a
time-sharing environment, the Digital Equipment Corporation
System-20 family with a TOPS-20 operating system or the VAX
family are recommended; but the personal-computing option

seems to be the recommendation of the future. This is the
use of specialized LISP machines, dedicated to a single
user, though they may be connected to each other via a
network. These are the machines that were developed and
used by some of the major research centers and should become
available for purchase during 1981. Their sale price seems
to vary between $30K to $150K. Fahlman lists various
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advantages for the dedicated machines as well as listings of
the present and future suppliers.

LISP is a language where statements and data are both
treated as symbolic expressions called S-expressions. These
S-expressions are made of lists of elements or even lists of
lists. The most basic element is referred to as an atom,
which may be a single character, a character string of
indefinite length, or even a number. For example, both of
the following are S-expressions:

(NOUN AGENT SING)
(VERB (TENSE (PRES)))

but they are represented differently internally.
Technically, an S-expression is either an atom, e.g. NOUN;
a pair of atoms, e.g., (NOUN-AGENT); or a pair of
S-expressions, e.g. (NOUN. AGENT. (SING))). The
parentheses and dots are a way of representing the
S-expression in what is called dot notation. The dot
notation illustrates that all non-atomic S-expressions are
actually represented internally as a binary tree structure.

Another means of representation of S-expressions is
graphically. To illustrate, let the following symbol

LZJZZ
represent a graphical node with a left and right branch.
Further, we will let arrows represent pointers to another
node or atom, i.e., a unique machine address.

With this notation, the list

(NOUN AGENT SING)

would be represented as:

NOUN AGENT SING
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where the diagonal line in the last box represents NIL which
is both the empty list and an atom. We introduce this
symbolism because it is used in some of our citations. In
fact, it appears in the logo of the LISP Machine
Corporation, one of the suppliers of a personal LISP
machine.

It is worth noting that the expression:

(VERB (TENSE (PRES)))

Lepresents a list of (an atom paired with a list (wherein
the list in turn consists of an atom paired with a list
(which in turn consists of an atom))). The graphical
representation of this expression would be:

The structure of the graph is meant to illustrate the way
lists are internally represented as binary tree structures.

LISP has numerous "built-in" functions which take lists
apart, put them together, and generally manipulate them. A
few selected examples of such functions will be discussed
for illustration. To begin, one could name a list by using
the function SET:

(SET 'VERBS' SEE LOOK PERCEIVE)

which would associate the list (SEE LOOK PERCEIVE) with the
atom VERBS.
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Furthermore, we could seek the first element of a list
as shown:

(CAR'((SEE LOOK PERCEIVE))

returns SEE,

(CAR'((SING PLURAL) NUMBER))

returns (SING PLURAL), or we could delete the first element,
keeping the rest as in

(CDR'(SEE LOOK PERCEIVE))

returns (LOOK PERCEIVE).

We also could seek the middle element by putting
together a combination which would take the first element of
the list, that results from the use of CDR as above.

Thus, in essence, CADR the CAR of a CDR as in:

CDR'(SEE LOOK PERCEIVE))

returns (LOOK PERCEIVE),

(CAR' (LOOK PERCEIVE))

returns LOOK. Therefore,

(CADR'(SEE LOOK PERCEIVE))

returns LOOK.

In addition to these functions, others can be used to
construct lists, such as APPEND, LIST, CONS, and DELETE.

A different class of functions are the predicates whose
values always are T (true) or NIL (false). Such is the case
for MEMBER, which returns T only if the first argument in
the function is a member of the second argument, which
always is a list.

(MEMBER 'THIS '(THIS IS A PLANE))

returns T.
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(MEMBER 'THE '(THIS IS A PLANE))

returns NIL.

Numerous other predicates exist which evaluate whether
two expressions are equal, whether an S-expression is an
atom, whether a number is even or odd, or whether it is less
than or greater than another number, etc.

The power of LISP begins to be appreciated when one
begins to look at the property list functions. Take, for
example, the noun "pilot." Its property list might be listed
as the following:

(CASE (OBJECT AGENT) NUMBER SING)

wherein the graph structure would be:

AENUMBTESI

One of the property list functions is GET, which
searches the property list of the first argument for the
entry listed as the second argument. If it is found, then
its property -- the next list element (the CAR of the rest
of the list) -- is eturned as the value of GET.

Thus:

(GET PILOT 'NUMBER)

returns SING.

If you want to know if the "pilot" could possibly be a
noun of the agent case,

(MEMBER 'AGENT (GET PILOT 'CASE))
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returns T. This is because the GET function returned the
next element that followed CASE, which was the list (OBJECT

. AGENT). The MEMBER predicate simply returned T because

K: AGENT was in fact a member of that list. Other property
list functions include a PUT funttion, which allows
properties to be added, or the REMPROP function, which
removes properties.

Another feature of LISP is that it will allow the
defining of functions, a feature which is widely used in
most intelligent programs. In fact, it is used so much that
a section of code may look like a completely different
language. Its flexibility allows functions to be used as
arguments and as data, i.e., elements in a list. This means
that it has an ability to assemble the elements of a new
function on its own. Additionally, LISP possesses the
capability for considerable recursion, i.e., an ability for
functions to call themselves. As an example, we will
illustrate both recursion and the defining of functions by
demonstrating the defining of the predicate MEMBER which was
described earlier.

Before we begin, we need to explain two more predicates
and an additional function. The first predicate is ATOM,
which takes only one argument. ATOM returns T if the
argument is an atom. It returns NIL if the argument is a
list.

The second predicate is EQUAL which takes two
arguments. As one may expect, EQUAL returns T if the two
arguments are identical S-expressions. It returns NIL if
they are not.

LISP also has a conditional statement of indefinite
length with the following syntactic form:

(COND (p1 el) (P2 e2 ) (Ph en))

where Pi refers to a predicate and ei to a functional
expression. When evaluated, if p, is not NIL, then el is
evaluated and the process leaves the COND function. But if
P1 is NIL, then eI is not evaluated and the process goes on
to P2" If P2 is not NIL, then e2 is evaluated, otherwise,
on to P3, etc.
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Now we can define MEMBER in terms of ATOM, EQUAL and
COND. We will use the following logic, which is presented
first in pseudo code:

Definp MEMBER(word, list)
If list is already an atom,

Then: If atom is equal to word,
Then: Return T.
Else: Return NIL.

Else: If word is equal to the
first element of list,

Then: Return T.
Else: If word is MEMBER of

the rest of the list
Then: Return T.

It is a simple definition except for the last "If"
statement, in which the function is used in its own
definition. In LISP notation, it would read:

DEFINE (MEMBER WORD LIST)
(COND ((ATOM LIST) (EQUAL WORD LIST))

((EQUAL WORD (CAR LIST)) T)
(T (MEMBER WORD (CDR LIST))))).

Notice that in the last line the function that we are
defining is in fact being used in that definition.
Recursive examples like this can be demonstrated in other
languages like BASIC, FORTRAN, etc., but are much more
difficult to implement.

There are many other features and concepts that are
notable in LISP. The reader is encouraged to consult the
sources cited for explanations of other functions,
predicates and special forms. Not discussed were such

features as Lambda functions and the binding of variables in
a local region (scope) of the program. Also not discussed
were any editing or debugging tools, input-output features,
or the capabilities for storage and garbage collection (a
colorful term to describe the reclamation process in
internal storage management). Our intent was not to create
a small LISP manual when others exist, but only to introduce
some of its features within the context of intelligent
instructor models for voice-based trainers. It is hoped
that LISP features and the other concepts from AI will serve
as an introduction to the approach and concepts we advocate
for an intelligent instructor model.
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SECTION IV

INSTRUCT

OVERVIEW

INSTRUCT is a symbolic generic training test system.
We refer to it as a test system because it includes a
training task, a trainee and a CRAI. The term symbolic
refers to the fact that the training task and the trainee
are both simulated. There are no actual visual displays
watched, no words actually spoken, and the events occur in
simulated time. The term generic refers to the fact that
the task environment is meant to represent the essential
features of an amalgam of event-driven training task
environments. We wished to maintain the generality of the
techniques, algorithms and findings developed in this
effort. Figure 5 illustrates the general flow of the
system.

TASK
SUBROUTINE

COGNITV IMULATED  .ESPONSE "

MOGITIVSTDN
ONITOR t NIO B

CRAI

Figure 5. General flow of INSTRUCT.
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The CRAI pedagogically determines the parameters for
the practice task and passes these to the task-student loop.
Using these parameters the task subroutine calculates a
display value and makes this parametric value available to
the simulated student subroutine.

The simulated student subroutine completes one
processing act in light of its internal states. It then
outputs a subsequent set of parametric values to the
monitors. One of these monitors records the student's
"covert" cognitive parameters. These will be used by the
experimenter for analysis of the CRAI performance.
Student's cognitive parameters are recorded every time the
simulated student completes some cognitive processing act.
The other monitor records only the student's "overt"
responses, representative of the type of information
available to a real-world voice-based training system. This
information will be used by the CRAI for its analysis of the
student and subsequent pedagogical decisions. Overt
responses are recorded, obviously, only when a processing
act results in an overt output. The time parameter is
advanced at the completion of each processing act. This
incrementation is an act-specific mathematical function of a
number of student factors, e.g., learning level and
resources allocated to the act. This time parameter is
passed to the task subroutine which updates the display
value accordingly. The task-student loop continues
iterating until the practice task is completed.

Once the practice task is completed the CRAI then
analyzes the student's overt responses, makes a pedagogical
decision as to the task parameters for the next practice
task and passes these to the task subroutine. A complete
training program consists of five practice tasks. The CRAI
itself is not a simulation. The inputs it receives and the
outputs it makes are of the same quality, albeit not the
same complexity, of a real-world CRAI. Similarly, the
processing steps it takes and algorithms it uses are
representative of those applicable to the real-world. It
is, after all, the logical sufficiency of these steps and
algorithms we are interested in examining.

Although the system is symbolic, we have found
exposition is aided by discussing various phenomena and
components as if they were real. Thus we find ourselves
discussing the student "scanning the plane" or "not seeing
it pass a call point." Since such "concrete" descriptions
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truly facilitate visualizing what the system is doing we
shall adopt this mode often in the following descriptions of
INSTRUCT components.

THE TASK

The task we designed is meant to be representative of
air traffic controller type tasks. As such, it incorporates
the essential task features outlined in Section II.

The following is a concrete description of the primary
task. Our student sits watching a display tube. The
display is a PAR type elevation glideslope display (see
Figure 6). The cursor represents the designated glidepath.
In our task each hashmark represents a mile mar! , and the
student must make an elevation call as the plane passes each
mark. An approach consists of the movement of the target
along the cursor from the right end to the left end. Thus
the student is supposed to make ten calls per approach. The
call the student must make is dependent upon the point at
which the target intersects the cursor. For illustration,
the target is broken into seven zones in Figure 6.

44

Figure 6. INSTRUCT task display.
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The call corresponding to each zone is given in Table
* 1. these zones are not actually demarcated for the student.

A significant part of the training task is to train the
student to discern the correct zone.

TABLE 1. GLIDEPATH ELEVATION ADVISORIES.

ELEVATION
ZONE ADVISORY
6 Well Above Glidepath
5 Above Glidepath

4 Slightly Above Glidepath

3 On Glidepath

2 Slightly Below Glidpath
1 Below Glidepath
0 Well Below Glidepath

There are five variables which define an approach
scenario. First, is the average glidepath elevation. The
plane can be set to vary around a particular glidepath zone.
Second, is the starting glideslope trend of the the plane
when it first appears on the screen. The plane can be set
to begin by rising or falling. Third, is the maximum degree
to which the plane will deviate from the average glidepath
elevation. Fourth, is the frequency with which the plane
crosses the average glidepath elevation. One might consider
this a pilot ability factor: less experienced pilots
tending to overcorrect. Fifth is the speed of the plane.
Because the task occurs in simulated time, the speed of the
plane is relative. Any attempt to translate it into real
time would be arbitrary. We will explain how these factors
interrelate and how they are manipulated to achieve the
optimum scenario in our discussion of the CRAI components.

Although it is considerably simpler than full-scale
real-world tasks, INSTRUCT's task does contain the essential
features outlined in Section II. First, it is cognitively
complex. The student must attend to vertical position,
discern the horizontal position, retrieve the appropriate
verbal response, and produce that response concurrently.
Second, the task is event-driven. The pace of the task is
controlled by the speed of the plane. If the student fails
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to respond quickly enough the plane may move from the
elevation zone the student is trying to process, or the
plane may pass a designated call point before the student is
fully prepared to make a call. Third, the event-driven rate
can be made to be beyond the novice's capabilities while
still within the capabilities of a simulated expert. This
last fact is revealed by our simulation results which will
be discussed in greater detail in Section V. With training,
our simulated student can achieve a perfect performance on
an approach scenario which is totally beyond the students
initial capabilities.

THE SIMULATED STUDENT

OVERVIEW. Our simulated student is a hierarchical
frame-system. Figure 7 presents a general illustration of
this system. The system is conceptually similar to that
currently proposed by Norman and Shallice (1980) and Norman
(1981) but was developed independently. For the sake of
clarity and conceptual parsimony, we will defer at times to
their terminology.

II II I I I I # I II

SCAN DETECT PCOMP CALL CCOMP WAIT
SI I I I I I I I

SKB

Figure 7. The simulated student.

45



NAVTRAEQUIPCEN 80-C-0061-1

There are six process frames we will call PROCS.
Briefly, ATTEND is the central control frame: it tests the
student's states and environmental information available to
it and determines the next cognitive action to be taken.
SCAN is the student's feature detector schema: it makes
environmental information available to the student. DETECT
is a primary level encoding schema: it spatially discerns
plane elevation levels. It almost always follows a SCAN.
PCOMP is a mental computation schema: it uses the student's
knowledge base to encode the spatial information from DETECT
into a higher level verbal response. CALL is an action
schema: it directs the student's overt responding. CCOMP
is a feedback schema: it directs the student's analysis of
the overt responses and determines possible changes in the
student's cognitive state. WAIT is a default schema:
WAITing is what the student does when encoding of the verbal
response is completed, but it is not time to make an
advisory.

As alluded to above, the student also possesses a
data-structure which we will call the student knowledge base
(SKB). It is also, initially, a hierarchical frame-system.
This data structure in its initial construction is
conceptually outlined in Table 2. We qualify this
illustration as initial because this data-structure evolves
into a homogeneous single frame as training progresses.

ATTEND. This frame directs the student's consideration of
the next cognitive act to perform. Its decision is a
function of a number of variables. These include: the last
act performed, the vertical position of the plane (i.e., its
relationship to the call points), and chance. For example,
ATTEND will not select CALL if a CALL has too recently been
made (i.e., the student will not make two advisories for the
same call point). Given this proscription the probability
of selecting a CALL is a function of the closeness of the
plane to the call point. This probability increases to an
asymptote of 100 percent as the plane passes the call point.
However, if the student is busy performing some cognitive
act while the plane passes the call point the student might
not readily ATTEND to the plane's vertical position in time,
causing the student to either make the advisory late or miss
it entirely. The student's consideration of some acts may
override its consideration of others. For example, the
student normally will DETECT immediately following a SCAN.
However, if the SCAN occurs near a call point, the student
may interrupt this sequence and perform a CALL instead. In
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TABLE 2. HIERARCHICAL STRUCTURE OF SKB.

MAIN: Lowest Resolution Frame.

Position Next Frame Learning

Somewhere Above ABOVE 0
Somewhere Above ABOVE 0
Somewhere Above ABOVE 0

On Glidepath ACTUAL 0

Somewhere Below BELOW 0
Somewhere Below BELOW 0
Somewhere Below BELOW 0

ABOVE: 2nd Resolution Frame.*

Well Above ACTUAL 0
Above/Slight AS 0
Above/Slight AS 0

AS: 3rd Resolution Frame.**

Above ACTUAL 0
Slightly Above ACTUAL 0

*BELOW is mirror reflection with positions
and frame pointers below the glidepath.

**BS is mirror reflection for below the glidepath.

i
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Norman and Shallice's (1980) terminology ATTEND is the
source schema which activates the other PROCS causing their

* 'selection.

SCAN. This frame directs the student's sensing of the
environment. It is the process through which raw
information about the task display enters the student
system. SCAN's selection by ATTEND involves chance. All
things being equal, the closer the plane is to a call point
the greater the probability of SCAN being selected. Once
selected, this frame updates the student's information
concerning the vertical and horizontal position of the
plane. It will also cause an emergency flag to be raised if
this information indicates that an advisory has been missed.
SCAN is a sensory act. SCAN's output is isomorphic with the
environmental information. Therefore, there is no error,
and subsequently no learning in this frame. However, the
time it takes the student to do a SCAN decreases with
training. This decrease is a function of the resources
allocated to SCAN and the number of times the frame is
selected.

DETECT. This frame directs the student's primary spatial
encoding of the plane's glidepath elevation. It will almost
always be selected following a SCAN. The exception is when
a CALL is given priority. DETECT encodes the raw data made
available by SCAN. DETECT can make an error in this
encoding. The probability of DETECTing the plane as being
in an adjacent zone to the one it actually is in is a
function of how close the plane is to the border between
zones: the closer it is, the greater the probability of
error. The student's ability to make accurate DETECTions in
a given zone increases with training, i.e., the student is
more and more likely to make an accurate DETECTion of a
plane at a given distance from a border. This increase in
ability is a function of the resources allocated to
detection and the number of times the student has made a
DETECTion in the particular zone. The time it takes the
student to do a DETECT decreases with training. This
decrease is a function of the resources allocated to DETECT
and the number of times the frame is selected. Note that
doing a DETECT of any zone reduces the time needed to do a
DETECT of all other zones, whereas DETECTion accuracy
improvement is specific to a particular zone, through
experience with DETECTing that zone.

PCOMP AND THE SKB. The SKB, outlined in Table 2, is the
structure for the PCOMP process. PCOMP directs the search
through the SKB in order to determine the proper verbal
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encoding of the spatial information made available by
DETECT.

The three levels of the SKB hierarchy can be viewed as
three successive levels of resolution: "MAIN" having the
least resolution and ABOVE/SLIGHT ("AS") or BELOW/SLIGHT
("BS") having the greatest. The arrangement is analogous to
a hierarchy of maps in an atlas. MAIN encompasses the whole
country, but only shows state boundaries for "ABOVE",
"BELOW", and a major city -- "On Glidepath". However it
points to where the next level of resolution can be found.
ABOVE, for example, encompasses less territory but now
brings the county of AS into view and denotes another city
-- "Well Above" (glidepath). AS encompasses the least
territory of all but finally brings into view the last two
cities -- "Above" and "Slightly Above" (glidepath). The
pointer "ACTUAL" signals ATTEND that encoding is completed
and that an actual advisory is ready to be made. Note that
in our implementation, the simulated student is assumed to
have "read the manual," i.e., the student has already passed
through the first schemata formation stage described by
Rumelhart and Norman (1976) and Norman (1978).

Admittedly this specific hierarchical arrangement was

intuitively designed, but we believe it is theoretically
reasonable. These levels of resolution are congruent with
Craik and Lockhart's (1972) concepts of levels of
processing. The hierarchy evolved from an introspective
observation of the decision tree used to compute the
appropriate advisory. First, the On Glidepath advisory
seemed unique in nature: it was the ideal elevation, and is
the only elevation neither above or below the glidepath. If
the plane is not on glidepath then it must be above or below
it: this is the MAIN frame. Once we have decided the plane
is above the glidepath, for example, then the next position
which seems most easily delimited is the one at the end of
the target -- Well Above. If the cursor does not cross the
target at the end then the elevation must be one of the
remaining two: this is the ABOVE frame. The last frame,
AS, represents the final determination: is the target Above
or only Slightly Above the glidepath?

We have previously alluded to the fact that the data
structure evolves from this hierarchical construction to a
single homogeneous frame. In the hierarchical construction
only the highest resolution frames AS and BS are
homogeneous, i.e., the quality of the data in each element
of the frame is the same. In the MAIN frame for example the
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On Glidepath element represents the code for an actual
advisory, while the other elements are merely pointers to
other frames. In our design two frames will merge when the
learning level of all of the elements of the higher
resolution frame reach a criterion level. When a merge
takes place each element of the lower resolution frame is
replaced by the corresponding element of the higher
resolution frame. Thus, eventually, the MAIN frame will
consist of seven elements each of them representing actual
advisories. The learning value of each element of a frame
is incremented each time that element is accessed. This
incrementation is a function of the resources allocated to
PCOMP and the number of times the element has been accessed.

It is PCOMP that directs the search and evolution of
the SKB. Some frame of the SKB is always available to
PCOMP. PCOMP directs three basic actions: (1) it
determines the next SKB frame to be searched, (2) it
increments the learning parameter associated with a
particular SKB frame element, and (3) it directs the merging
of SKB frames.

The essential function of a single PCOMP cognitive act
is to determine the next SKB to be searched in order to find
the appropriate verbal encoding of the spatial code made
available by DETECT. This determination is a function of
the zone DETECTed and the SKB frame which is currently
available to PCOMP. PCOMP first determines if the frame is
sufficient, i.e., if a verbal encoding element corresponding
to the spatial code is even present in the frame. If one is
not, we could say that the plane has moved outside of the
student's current frame of reference. Therefore, PCOMP
directs that the next search should begin again at MAIN
frame.

If a corresponding verbal element is found in the
frame, a number of actions are taken. First, the learning
parameter associated with the element is incremented.
Second, PCOMP determines if a merge is warranted. If it is,
the merge is completed. Next, PCOMP examines the
corresponding verbal element. If it is a pointer to another
frame, this pointer is stored in short term memory. If the
element is the encoding of an actual advisory, then the
advisory is stored in short term memory and a flag is set
indicating to ATTEND that an advisory has been encoded and
no more PCOMPing is necessary unless the plane is DETECTed
as having moved to another spatial zone.
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The time needed for doing a PCOMP for a particular
spatial zone decreases with practice in processing that
particular zone. This decrement is a function of the
learning parameter associated with the verbal element
corresponding to the spatial zone.

This implementation of PCOMP encompasses the
qualitative and quantitative changes in cognitive processes
and data-structures outlined in the Section II. We have
described the evolution of the SKB, and the fact that PCOMP
has been programmed to increase speed with practice. In
addition, the interaction of the PCOMP process with the
evolving SKB yields a difference between the novice and the
expert. Chatfield et al. (1979) noted that one capability
of the expert that seems to facilitate processing is the
expert's apparent ability to anticipate the movements of the
target. This ability has been implemented in INSTRUCT's
simulated student through the interaction of the PCOMP
process and the evolving SKB. When the SKB is hierarchical
the student's ability to "anticipate" is limited. The
student can deal proficiently with a plane that changes
zones as long as it stays in the student's fr.ame of
reference. The problem arises from the fact that the
student's frame of reference unfortunately grows narrower as
verbal encoding progresses. Because time is also
progressing, the probability of a zone shift concomitantly
increases. However, the merging of the SKB frames allows
verbal encoding to be completed in a frame with broader
reference. Therefore, an expert with a fully homogeneous
MAIN frame: (1) only has to make one PCOMP (of MAIN frame)
to verbally encode the planes spatial position, and (2) the
plane will never drift out of the frame of reference.

CALL. This frame directs the student's output of an overt
response. CALL may be selected by ATTEND whether or not the
target's glidepath elevation is completely encoded. If
encoding is complete, CALL prepares to output the
corresponding verbalization. If encoding is incomplete,
then CALL prepares an "educated" guess. In this case CALL
will access the SKB frame in short term memory and prepare a
verbal response that corresponds to one of the positions,
randomly selected, within its frame of reference.
Therefore, the further along the verbal encoding is, the
greater the probability of the guess being correct.
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Error may occur in the actual output of the verbal
response. Ill-phrasing or speech degradation may occur with
some probability on any verbal response. The probability of
either occurring is much lower for a prepared advisory than
for a guess. The probability of degradation to either type
of advisory decreases with practice. This decrement is a
function of the resources allocatad to CALL and the number
of times CALL has been selected.

CCOMP. This frame directs the student's use of internal
feedback. The student can not inherently know if an
advisory is correct or not. INSTRUCT's student does know:
(1) if an advisory was missed, (2) if an advisory was made
before final verbal encoding was complLed, i.e., a guess,
albeit a possibly educated guess, (3) if an advisory was the
result of complete encoding. The student inherently acts to
decrease the likelihood of the first two types of advisory
each time they are encountered. This is done by attempting
to increase the amount of PCOMPing between advisories. To
do this the student increases the range on either side of
the midpoint between call points where no competing
cognitive act is allowed. This range is decreased whenever
a completely encoded advisory is made. The minimum limit of
this range is zero, the maximum is the full distance between
call points.

WAIT. Currently the student is directed to SCAN and DETECT
while WAITing. This is a default schema. With the present
task the most important thing the student can do while
WAITing is SCA17 and DETECT. If the plane remains in the
same zone as that verbally encoded, WAITing continues. If
the planes shifts zones, then WAIT directs the student to
return to PCOMP.

THE COMPUTER RESIDENT AUTOMATED INSTRUCTOR

OVERVIEW. As we reported in our introduction, Chatfield et
al. (1979) described the necessary components of such an
instructor. These components included a knowledge base, in
which procedural as well as factual knowledge would be
representL a model of the student; a performance
measuremenc or monitor component; a diagnostic component
capable of deducing the state of covert student student
processing and knowledge levels from overt student behavior;
and a curriculum driver which could use the student model to
determine the "tutorial" function or adaptive task scenario
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that would optimize the student's learning. In addition it
was noted that a natural language interface would be useful
in providing the student with a means for initiating
information inquiries, in allowing the system to refine its
diagnosis of student problems by interrogating the student,
and provide the human instructor with convenient access to
the system's data base on student performance and its
pedagogical rationale.

INSTRUCTOR KNOWLEDGE BASE (IKB). The IKB is the core of the
CRAI, just as the human instructor's knowledge is the core
of his/her instructional decision making. It is clear that
a major element in the human instructor's knowledge base is
a model, albeit possibly an intuitive model, of covert
student psychological processes. Instructors, as well as
students, refer to these subjective processes as if they are
real. LSO's often refer to the student as "getting the
eye," an obvious reference to what we formally defined as
the perceptual processing stage. In addition, instructional
strategies and alternatives reflect an implicit assumption
of the existence of separate processing components.
Instructors may prescribe special exercises to develop the
student's detection skills, when they surmize that the
student's perceptual abilities are weak. They may instruct
the student to review the rules for developing advisories,
when they suspect deficiencies in what we have defined as
the mental computation processing stage. Thus, instructors'
pedagogical behavior adds, at the least, face validity to
our theoretical hypothesis of staged processing.

In addition, this behavior indicates the need to
specify these processing stages in units which are pragmatic
with respect to the training alternatives available, as well
as being valid psychological constructs. Furthermore, these
units must be meaningful and intuitively appealing to the
student to facilitate diagnostic introspection and
instructional influence.

The Basic Student Model. The IKB must then contain
information about the student and the task and the
relationship between them. In INSTRUCT all of this
information is completely defined. In particular, we know
the exact implementation of the psychological concepts of
the nature of the student presented in Section II. For
example, we know that initially mental computation of the
verbal encoding of a target elevation operates on a three
level hierarchical data-structure. We even know the exact
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form of the process by which this encoding takes place and
the way in which the data-structure evolves. In the real
world this precise information would not be available.
Conceptually we would know that some form of mental
computation takes place, but we would not know its exact
form. We might even conclude that the process operates on
some form of hierarchical data-structure, but we wouldn't

. know how many levels. In other words, given our present
psychological knowledge, our model of the student might be
conceptually, logically and/or pedagogically sufficient, but
it will not be fully determined.

Thus, our representation of the student processes
should not be as detailed as they could be. It would be
more instructive to approach the representation of these
processes from a more naive and general perspective, as we
would have to do in an actual system design situation.

In the design of the simulated student, we chose to
work with only a few basic processes which would adequately
illustrate the training system design. We certainly
wouldn't want greater complexity in our model of that
student. Thus drawing on the same literature which
underpins the simulated student we would discern a number of
basic processes: attentional decision making, resource
allocation, perceptual/scanning, detection, mental
computation, and verbal production. With our present
knowledge, we do not know the precise sequence these
processes are brought into play to produce an elevation
advisory. However, it would be reasonable to assume that
the production of an advisory would require each of these
processes, and logically, in a single action sequence,
scanning would precede detection which precedes mental
computation which precedes verbal production. Figure 8
illustrates this action sequence and its relationship to
other processes. It would also seem reasonable that a
failure in any of the links in this logical chain would
cause the whole sequence to fail, or at least produce an
erroneous response. Note also that only verbal production
is overtly measurable, i.e., the state of the other

Soprocesses must be inferred from the qualities of this verbal
production.
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Figure 8. Relationships between basic processes.

Elaborating the Basic Model. Two problems now arise: (1)
what pragmatic information about these processes in the
basic model are necessary for artificially intelligent
pedagogical decisions, and (2) how should this information
be represented for use by the CRAI.

Early in the current contract effort we examined the
pedagogical significance of actually being able to estimate
the resource allocation parameters relevant to the momentary
acquistion rate. We developed a computer simulation model
which embodied and allowed us to manipulate the cognitive
resource allocation and resource allocation acquisition
characteristics of an exemplar processing component.

The simulation involved a number of assumptions.
First, that the student would be required to master two
independent cognitive components of a task. Second, the
student would operate under limited resources: the resource
allocations would add to a constant, and manipulation of
allocations was limited to a swap of resources between the
two components. Third, mastery of these components would be
acquired through practice. Fourth, that for a given
resource allocation for a given task, the relationship
between the level of mastery acquired and the amount of
practice trials completed would be described by a learning
curve which was continuous and monotonic, and concave
downward. Fifth, the rate at which the learning curve would
approach its asymptotic momentary acquistion rate would be
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positively related to the level of cognitive resources

allocated to the learning of a particular component

throughout each practice trial. However, the exact nature
of that relationship would be determined by the resource
allocation acquisition function (RAAF) for each cognitive
component. A detailed explanation of the RAAF can be found
in Chatfield et al. (1979).

* With this model, various combinations of RAAF's for the
two cognitive components could be established. We could
then examine the interaction effect of the combinations with
various resource allocations on the optimum pedagogical
strategy (that strategy which achieved the greatest
increment in learning on each trial). For example, we were
able to examine the effect of equal allocation to both
components and various degrees of differential allocations,
crossed with various learning curves.

We examined the effect on trials to acquistion, and in
particular the pattern of reallocation resources yielded by
the optimization constraint. Tables 3 and 4 illustrate the
typical acquisition pattern. In each example the RAAF's for
the two tasks were the same. The same RAAF's were also used
in both examples. Note that the higher differential
allocation yields a higher rate of learning. This finding
held under all combinations of RAAF's. However, note that
the pattern of reallocation is the same in both examples.
This general pattern also held for all combinations of
RAAF's and allocations. The pattern initiates by allocating
the greatest resources to the task with the lower average
momentary acquisition rate (the average momentary acquistion
rate is a function of the RAAF. If the RAAF's are equal the
initial allocation is arbitrary). The allocations are then
swapped until learning on the remaining task exceeds that of
the first. Allocations are then swapped again. The pattern
continues, and the point of reallocation is essentially
always that point when the task with the higher allocation
exceeds the learning of the remaining task.

The results of this simulation indicate that a precise
determination of RAAF's probably would not add significantly
to the pedagogical knowledge base, i.e., its computational
cost would not be offset by its pedagogical benefit. Even
an error made in the initial allocation, by not knowing the
relative RAAF's, would not make a significant difference in
overall acquisition rate. In addition, regardless of the
RAAF the pedagogical strategy of choice is to manipulate the
student into as great of a differential allocation as
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TABLE 3. TURNPIKE SIMULATION WITH HIGH DIFFERENTIAL

TRIAL RESOURCE RESOURCE LEARNING LEARNING TOTAL
TASK 1 TASK 2 TASK 1 TASK 2 LEARNING

1 .9 .1 .478297 1.00000E-07 .478297
2 .1 .9 .478297 .478297 .956594
3 .1 .9 .478297 .727826 1.20612
4 .9 .1 .727826 .727826 1.45565
5 .9 .1 .858006 .727826 1.58583
6 .1 .9 .858006 .858006 1.71601
7 .1 .9 .858006 .925921 1.78393
8 .9 .1 .925921 .925921 1.85184
9 .9 .1 .961353 .925921 1.88727
10 .1 .9 .961353 .961353 1.92271
11 .1 .9 .961353 .979838 1.94119
12 .9 .1 .979838 .979838 1.95968
13 .9 .1 .989481 .979838 1.96932
14 .1 .9 .989481 .989481 1.97896
15 .1 .9 .989481 .994512 1.98399
16 .9 .1 .994512 .994512 1.98902
17 .9 .1 .997137 .994512 1.99165
18 .1 .9 .997137 .997137 1.99427
19 .1 .9 .997137 .998506 1.99564
20 .9 .1 .998506 .998506 1.99701
21 .9 .1 .999221 .998506 1.99773
22 .1 .9 .999221 .999221 1.99844
23 .1 .9 .999221 .999594 1.99881
24 .9 .1 .999594 .999594 1.99919
25 .9 .1 .999788 .999594 1.99938
26 .1 .9 .999788 .999788 1.99958
27 .1 .9 .999788 .999889 1.99968
28 .9 .1 .999889 .999889 1.99978
29 .9 .1 .999942 .999889 1.99983
30 .1 .9 .999942 .999942 1.99988
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TABLE 4. TURNPIKE SIMULATION WITH LOW DIFFERENTIAL

TRIAL RESOURCE RESOURCE LEARNING LEARNING TOTAL
TASK 1 TASK 2 TASK 1 TASK 2 LEARNING

1 .6 .4 .0279936 1.63840E-03 .029632
2 .4 .6 .0295861 .0295861 .0591722
3 .4 .6 .031176 .0567515 .0879275
4 .6 .4 .0582969 .0582969 .116594
5 .6 .4 .0846586 .0598398 .144498
6 .4 .6 .0861583 .0861583 .172317
7 .4 .6 .0876555 .11174 .199395
8 .6 .4 .113195 .113195 .226391
9 .6 .4 .13802 .114648 .252668
10 .4 .6 .139432 .139432 .278865
11 .4 .6 .140842 .163523 .304365
12 .6 .4 .164893 .164893 .329787
13 .6 .4 .189271 .166262 .354532
14 .4 .6 .189601 .189601 .379202
15 .4 .6 .190929 .212287 .403215
16 .6 .4 .213577 .213577 .427155
17 .6 .4 .235592 .214866 .450458
18 .4 .6 .236845 .236845 .473689
19 .4 .6 .238095 .258208 .496303
20 .6 .4 .259423 .259423 .518847
21 .6 .4 .280155 .260637 .540792
22 .4 .6 .281334 .281334 .562668
23 .4 .6 .282512 .301452 .583964
24 .6 .4 .302597 .302597 .605193
25 .6 .4 .32212 .303739 .625859
26 .4 .6 .32323 .32323 .64646
27 .4 .6 .324339 .342175 .666514
28 .6 .4 .343253 .343253 .686506
29 .6 .4 .361638 .344329 .705967
30 .4 .6 .362684 .362684 .725367
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possible. The reallocation decision would then depend on
accurately discerning the students relative learning levels.
It became apparent that this discernment could be more
efficiently achieved through heuristic (as opposed to
mathematical optimization) techniques in the voice-based
task environment, i.e., through the use of artificial
intelligence deductive techniques. To facilitate this
process, it would be necessary to elaborate the basic model.

To continue developing a representation system, the
generic form of a process needs to be examined more closely.
Figure 9 shows what might be considered the general form of
an information processing unit. The figure depicts an
unnamed process which would receive information from another
process in a preceding stage, process the information and
pass the information to a subsequent processing unit (unless
it itself is the termination of a chain).

QESOURCE

LOCATION)

<AGET <0 JECT>

~PROCESS

POCut COMPONENT SCHEXAS Output-"k. ROCESS

Deterrent When

< RRCAUSE>< oCSAcquisition

omposition Acquisition

<RUES> <PROFI ENCY>

Figure 9. The generic form of
a basic process.
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The process could be thought of as being composed of
component schemata, which may or may not be known to an
instructor or possibly even the student. These component
schemata represent the knowledge structure or rules by which
the process operates. At the beginning of training or
during remediation, the tutorial function may establish

* -these rules. For example, in computing a trend call the
student may be told to consider the current position of the

* iaircraft and whether it is approaching or departing from the
glidepath.

The exact rule could be stated in the form of a series
of "If-then" statements that the student would try to
remember and use in processing. The structures may evolve
to more efficient forms during training. For example, the
If-then statements ultimately could be replaced by simple
associations. Thus, the instructor and possibly even the
student may not be aware of the exact state of the evolution
of the component schemata during training. For this reason,
the schemata are left in a non-specific form at this point

*in our representation.

As also can be seen in Figure 9, conceptual information
regarding processes is included in our generic
representation, mainly for the benefit of our interrogatory
interface. As noted, an act of information processing would
include an actor (an agent who does the processing), a
direct or indirect object (that which is being processed),
and a time in which the act occurred (usually expressed in
reference to the location of the aircraft at the time).

With this information, the activation of a processing
unit (which we will denote as a PROC) can be expressed as a
predicate, such as:

PROC(AGENT, OBJECT, TIME)

after the manner described in Norman, Rumelhart and the LNR
Research Group (1975).

A particular instantiation of the predicate could be:

DETECT (STUDENT, WAGP, 2 MI MARK)

which depicts the idea that the student detects the aircraft
as well-above the glidepath at the two-mile mark. With the
arguments filled in, the predicate now becomes a proposition
with a truth value, i.e., the student either did or did not
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detect the aircraft as stated. The determination of the
truth value becomes the purview of the diagnostics module in
INSTRUCT with the help of the interrogatory interface.

It was determined that other information needed to be
represented in our generic depiction of a PROC. In the
diagnostics routines, searches would be made for the causes
of an incomplete or incorrect functioning of a process,
i.e., some particularly conceptual entity (ERRCAUSE) would
be responsible for impeding the progress of the PROC toward
a correct and timely conclusion. Further, reference would
need to be made to the various rules comprising the initial
structural base (component schemata) of the PROC, as well as
some form of current proficiency information on the PROC,
which would be used by the student model.

An example of a mental computation PROC (which we will
refer to as an MCOMP) is shown in Figure 10. Using the
information in the diagram, a frame-like data structure can
be created which will carry the information required by
INSTRUCT.

<AGENT <ADVISORY>-)<TYPE>

Inpu Component Schemas

Deterrent

<ERRCAUSE> Acquisition (TIME>
Composition

( > <PRoFICIENCY>

Figure 10. Representation of a
mental computation PROC.
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An example is shown in Figure 11. As can be seen, the
*array is organized into rows, which could represent the

various slots in a frame, which need to be filled. The
first element in a row contains the slot label, such as
"SUBJECT." The second element contains the slot entry or
value itself, for example, "(STUDENT)," which would be the
actor in an MCOMP action. The third element is the
constraint or condition for value assignment.

MCOMP

TYPE ?
INPUT DECTECT
OUTPUT VPROC
SUBJECT (STUDENT) AGENT
VERB (\THINK) MCOMP
OBJECT ? CALL
DETERRENT #16 ERRCAUSE

Figure 11. Individual data-structure for
representing the PROC MCOMP.

* In the "SUBJECT" row, the value inserted must be a noun
of the "AGENT" case. The left-most column is fixed and
represents the attributes always present and needed to
understand the action of an MCOMP. The middle column is to
be filled during the process of instantiation. It may,
however, contain default values that are used in the absence
of overriding information. In INSTRUCT, the default values
were denoted by parentheses. The question marks denoted the
fact that no default values were to be found and that it was
mandatory for the system to seek the appropriate values. In

*. some cases, the entry was blank indicating again no default
value, but also that it was not mandatory that an entry be
obtained. The number in the last entry represents a pointer
to another data structure that ultimately would fill the
"DETERRENT" slot. Additional detail concerning the meaning
of some of the entries will be explained more fully in our
discussion of the interrogatory interface.

The six PROCs shown in Figure 10 all were represented
by data structures similar to that shown in Figure 11.
Considering the numerous instantiations possible, however, a
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far larger number of specific processing instances could be
represented as variants of the basic six. But for
completeness, more than just PROCs needed to be represented.
The representation of the basic cognitive processing units
would be sufficient for most of the INSTRUCT modules, such
as the student model, curriculum driver, etc., but not for
an interrogatory interface. The interface would require a
small semantic network consisting of the concepts required
for discourse with the student. Figure 12 shows a small
portion of the network that would support such a discourse.

<ELEVATI ON>

AIRCAr> 
<AZIMUT

i~ <POSITION> '

h n C tle,

DECISIO A Qent

<STUDENT>

4 M~1ORYContent

Figure 12. A portion of the type of semantic
network that would be required to
support discourse regarding the
basic processes.

As might be suspected, the network could get to be
quite large unless constrained. As stated previously,
intelligent systems need a rather limited domain in which to
operate. INSTRUCT's domain is even more limited as its only
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* purpose was to devise a model to show feasibility, not to
create an extensive operational system. Thus, in keeping
INSTRUCT's domain limited, the only nodes that were included

.' were those that were needed to carry on a dialogue about the
student's performance. The data structures for other verbs,
some of which are shown in Figure 13, were created. Verbs
such as these would give INSTRUCT the capability of

* discussing "the occurrence of events," "memory,"
"distracting events," etc. The other nodes in the network,

*such as nouns, were represented lexically.

OCCURRENCE
SUBJECT ? EVENT
VERB OCCURENCE
PREPV (\THIS TIME) TIME

STATIVE
SUBJECT ?
VERB (IS) STATIVE
OBJECT ?

RETRIEVE
SUBJECT (STUDENT) AGENT
VERB (REMEMBER) RETRIEVE
OBJECT ?

Figure 13. Data structures for verbs showing
default values.

In short, representation in INSTRUCT centered around
basic cognitive processing primitives. It was assumed that

*the variants of task scenarios and performances would simply
involve instantiations of the basic processes. Information
and pointers regarding these PROCS were represented by
frame-like data structures. Additional frames were
developed around other verbs that would be needed for
understanding discourse with the students. Other concepts
required for discourse were simply represented as lexical
entries. In the subsection on the interrogatory interface,

64

4



NAVTRAEQJIPCEN 80-C-0061-1

we will explain in greater detail how these representations
are actually used.

DIAGNOSTICS. This component of the CRAI directs the process
of inferring the state of the student's covert cognitive
components from the student's overt responses. The
subprocesses involved fall into categories analogous to
those outlined for the student. The monitor is the CRAI's
feature detector or sensory surface. This information is
first passed through a preliminary encoding which identifies
what surface events are indicated by the monitor record. A
secondary encoding then interprets the pattern of events in
terms of possible underlying covert causes. These causal

* -hypotheses may be validated by directing the request of new
information from the environment through an interrogatory
interface.

In our implementation of INSTRUCT we chose to use a
passive monitor of the student's overt reponses during the
task. This monitor is analogous to a simple tape recorder.
The monitor records the planes vertical and horizontal
position at the time of the response as well as the response
itself. We relegated even preliminary interpretation of
surface events (e.g., a wrong advisory) to take place
between practice approaches. In a real-world system some
efficiency might be gained by having this work done during
the relatively long pauses (for a computer) between student
reponses. Recall, that in our case this time is filled with
recording the simulated student's cognitive actions. In
addition, we thought it would make the CRAI conceptually
more coherent to schedule all of its encoding routines
together. In any case the techniques we implemented are
representative of those which might prove useful in the real
world, even should the scheduling of their use might be
different.

Preliminary Diagnosis. Quick intuitive analysis might lead
one to believe that a "late advisory" or a "speech degraded
advisory" are simple events, but careful introspection will
reveal that they are indeed conceptual interpretations of
the events occurring in the context of the task environment.
This context provides us with constraints on the
interpretation of these events which allow us to efficiently
encode most of them. This use of constraints is a powerful
AI technique. It is used in computer visual interpretation
(Waltz, 1975) and in natural language processing (see
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Winston, 1979, for a review). Indeed one of the major
difficulties in natural language processing is defining the
constraints of natural language. This has led, on the one
hand, to the use of "programming" languages when talking to
computers, because these languages are designed with rigid
constraints. On the other hand, research continues into
defining the algorithms needed to provide the computer with
the capabilities to "discover by example" these constraints
(see Carbonell & Michalsk, 1981, for a review of current
research).

In its preliminary encoding, the CRAI looks for both
evidence of student initiated events (e.g., a late advisory)
and environmental contingencies which might contribute to
student difficulties (e.g., the plane crossing a zone
boundary just prior to a call point). The constraints for
the interpretation of such events are programmed into a
decision tree. For example, determine if an advisory was
missed. The positions at which advisories are supposed to
be made are predetermined. Second, the simulated student
never makes an early advisory. Starting at a given call
point, the CRAI applies the rule: if no advisory was made
between this call point and the next, then an advisory was
missed. The task environment constraints also determine the
hierarchy of the decision tree. For example, if an advisory
is interpreted as missed, obviously no other student
initiated events regarding that call exist. Therefore,
further examination for such events can be terminated.
Efficiency is facilitated by eliminating redundant
processing.

This Preliminary encoding is carried out until the
relevant events surrounding each call point are as fully
determined as possible, and encoded in a form which
facilitates further diagnosis. Some events can not be fully
determined at this level. For example the CRAI does not
contain the necessary constraints to determine if an
advisory was speech degraded or simply improperly phrased.
The CRAI has constraints to determine that the observed
advisory does not match a model of the expected advisory,
and that it does not match the a model of any other proper
advisory. In other words, the CRAI knows what the advisory
is not. As will be shown below, even this much information
is inferentially useful. However, full determination of the
event would take a considerable amount of knowledge about
natural spoken language constraints which may not be
available. Such an instance is one case where the
interrogatory interface would prove useful (the details of
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that procedure will be outlined in our discussion of the
interrogatory interface, later in this section).

Secondary Diagnosis. Our conceptual model of the student
would suggest that certain patterns of surface events might
be associated with specific covert problems. For example,
an inefficient detection component would be expected to
yield a missed or late advisory because of its slowness or a
wrong advisory because of its inaccuracy. It would be less
directly associated with speech degradation or phrasing
problems. On the other hand an inefficient verbal
production unit would be directly associated with degraded
speech and phrasing problems, but would not be expected to
yield an advisory for the wrong elevation. The pairing of a
pattern of events with a causal assertion is an example of a
production rule.

The CRAI contains a production system which we have
called the Causes-Event data-structure (CEDS). This
production system defines the expected events associated
with inefficiency in each of the cognitive processes, as
well as with external contingencies, e.g., a late elevation
zone boundary crossing. By examining the match between the
observed events with each production rule's pattern, the
CRAI can establish the probability that the observed events
were caused by the associated inefficiency or contingency.
One examination we shall make will scrutinize the CRAI's
ability to infer covert causes from the student's overt
responses.

Although a unique pattern of events can be associated
with each possible cause, two factors hinder positive causal
identification at this level: (1) not all events associated
with a cause will necessarily occur because that cause is
present, and (2) there is considerable overlap between the
patterns of events associated with different causes. For
example, an inefficient mental computation process would be
associated with a missed or late advisory because of its
slowness. This slowness might also force the student to
guess, yielding an advisory for the wrong elevation. This
guessing might also be manifested in degraded speech or
incorrect phrasing. Now let's assume the observed events

are a late advisory for the wrong elevation. These two
events are associated with an inefficient detection
component, as well as the inefficient mental computation.
This is another example where it would be useful for the
CRAI to return to the environment (i.e., the student) in an
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attempt to further verify its hypotheses concerning the
state of the student's covert cognitive processes.

Interrogatory Interface. Creating a natural language
interface was never the intent of the present project. Many
such interfaces have been built and could be adapted to the
needs of an actual voice-based trainer. Much is known about
the process of understanding natural language and even
though much has yet to be developed, our efforts were not
designed to add to that knowledge. Those wanting to know
more about the application of natural language in training
could consult Burton and Brown (1979).

As was noted in the previous subsection, there was a
real need to provide the capabilities for discourse with the
student for diagnostic purposes. Furthermore, this likely
could be the case in most training situations. We,
therefore, sought to add these capabilities in some small
amount to provide an example of its usage and to augment the
diagnostic component of INSTRUCT. However, since creating
an extensive natural language interface was not the purpose,
a smaller version was created and was more modestly termed
an "Interrogatory Interface." Its purpose was to serve only
specific diagnostic needs (thus leading to the use of
certain shortcuts) while demonstrating some of the
techniques and capabilities of a larger interface.

The interface was composed of three major sections:
the parser, the understander and the production unit. All
three components make use of the frame-like data base
(discussed in the subsection on elaborating the basic model)
and a lexicon. The parser's function was to accept the
student's input, parse the input into its syntactic units
and then pass the information on to the understander. The
understander then would attempt to understand the input and
act upon it. The action taken may be in the form of the
generation of a command or a question. If the understander
was to produce another verbal response, it passed the
appropriate information on to the production unit which
transformed it into a syntactically correct verbal response.
The subsections that follow will describe each of the
interface components in more detail.

Parser. The parser was made up of two components: a
syntactic specialist and a sentence specialist. The
syntactic specialist made use of techniques and notations

68



NAVTRAEQUIPCEN 80-C-0061-1

which were closely related to the Augmented Transition
Network (ATN) formalism developed for natural language
grammars. Those interested in reading an early
comprehensive discussion of an "Augmented Finite State
Transition Network" should consult Woods (1970). Other
sources are Simmons (1973) and Norman and Rumelhart (1975).

A transition network, simply stated, is a formalism for
describing the rules by which a process makes a transition
from state-to-state. In this case, the states are syntactic
units or words, and the rules for transition are given by
grammatical constraints. Figure 14 shows a simple
transition net for a noun phrase in the parser.

SEEK(ADJ) SEEK (PP)

/\ SEI-X(DET)6~ SEEK(ADJ) SEEK(NOUN)
-'J OTA R TADJ EU

SEIX(ADJ)

Figure 14. Simple transition net for
a noun phrase.

The circles or nodes represent the states, while the
arcs connecting the nodes represent the means by which the
process can affect a transition. The term "SEEK" in the
current case refers to a function whereby the system checks
the appropriate portion of the lexicon (the internal
dictionary) as specified by the argument for the word in
question. Where nodes have multiple arcs or routes by which
the process may leave, the arcs or SEEK functions are tried
and executed in clockwise order until a successful
transition is made.
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As an example, suppose the student made reference to:

THE DUMB PILOT.

Starting at the first node, the system would check the list
of determiners to see if the entry "THE" was a member. If
it was, then transition to the next state labeled "DET" was
made which indicated that a determiner was identified. Had
the word "THE" not been found in the determiner list, the
system would have then checked the adjective list, followed
by the noun list.

* Having just found the determiner, however, the
adjective list now is searched for the second word, "DUMB."
Eventually the process makes its way through the net placing
the words in their appropriate registers (Figure 15) for
later consideration by the sentence specialist.

An extensive ATN also would take notes as it progresses
from node to node to determine the features or properties of
the phrase. For example, when seeking the determiner it
would take note of whether it was definite or indefinite and
its number (singular or plural). Assuming the adjective and
noun were in agreement, these features would become
properties of a noun phrase. Because the sentences we were
to parse in the current context were to be quite simple,
some of the more extensive "note-taking" was omitted as one
of the shortcuts.

DET : THE
ADJ : DUMB
NOUN : PILOT

Figure 15. The result of the parsing of
a noun phrase in which the words
are sorted into their appropriate
registers.

Once the transition net for a noun phrase was obtained,
it could be defined as a function, such as "SEEK(NP)." This
function could then be used in a transition net for
prepositional phrases, as shown in Figure 16.
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SEEK(PREP) SEEK(NP)

Figure 16; Transition net for a
prepositional phrase.

Note that the procedure checks for a preposition first,
followed by the search for a complete noun phrase. Denoting
the function as "SEEK(PP)," it must then be added to the
noun phrase function as shown on the last node in Figure 14.
Thus, within the NP function, the PP function is called,
which itself calls the NP function.

This recursive use of the functions allows the parsing
of noun phrases with considerable imbedding of prepositional
phrases, such as:

THE TIRED PILOT IN THE PLANE AT THE 2-MILE MARK

A function was similarly developed to parse a verb
phrase. This routine not only would identify the verbs and
adverbs, but also would take note of tense, person, number
and whether the verb was in progressive form. Determination
of the characteristics of the verb had to be supplemented,
of course, with information obtained from an auxiliary verb,
if there was one. Similar to the noun phrase function, any
verb phrase identified was followed by a search for a
modifying prepositional phrase.

* -With the collection functions searching for particular
4phrases, a larger net for complete sentences could be

assembled as shown in Figure 17. This particular net was
designed for a simple declarative sentence in active voice.
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STA SEK(N)QSEEK( P) SEEK(P)

Figure 17. Transition net for a simple
declarative statement.

A net for passive voice was somewhat more complex, as
* shown in Figure 18.

NAVSEEK NP N/A
N/A/VV/N

Figure 18. Transition net for declarative
sentences in passive voice.

The two nets together make possible the parsing of
sentences, such as:

THE PLANE PASSED THE 5-MILE MARK. (active)
THE 5-MILE MARK WAS PASSED BY THE PLANE. (passive)

The parsing of the first sentence can be seen quite
readily. The second sentence begins with a noun phrase,
followed by an auxiliary verb (was) and a main verb
(passed). The verb phrase was completed by the introduction
of the prepositional phrase "by the plane" (the SEEK(VP)
routine contains a SEEK(PP) routine). At that point, the
sentence ended prior to the identification of another noun
phrase. It should be noted that the parsing process could
exit from any of the states in the net if it did not have
additional phrases to parse.
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At this point, it can be seen that an extensive series
of transition nets could be assembled to create a large
parser. As our purpose was only to create a small
demonstration interface, we chose to limit the inputs to
simple sentences with only a single verb phrase. Should the
student's input take the form:

I CANNOT REMEMBER WHEN I NOTICED THE DEVIATION,

only the first clause would be used, the second being
ignored. It was felt that the exclusion of subordinate
clauses, compound sentences, etc., would simplify the design
of the interpreter, but still allow the interface to
function sufficiently well to be an aid to the diagnostics
module.

In addition to the transition nets for declarative
sentences, nets for imperative, Wh-interrogatory and yes-no
interrogatory sentences were added.

Thus, the parser now would handle such sentences as:

STOP THE PLANE!
WHAT SHOULD I DO NOW?
WAS MY CALL CORRECT?

By these different sentence forms, however, it must be
remembered that the transition nets described simply
identified each of the words as to whether they were nouns,
verbs, prepositions, etc. Thus, the transition nets
constituted the word specialist portion of the parser. Each
time a word was identified as a certain part of speech, it
was tagged as shown in Figure 13, and then written into a
portion of memory called the parse blackboard. The term
blackboard was used to refer to information that might
periodically be modified and used by other modules.

The task of the sentence specialist was to identify the
syntactic groupings of the words within the sentence. For
most of the simple sentences that the interface would
encounter, the task was not difficult. Usually the noun
phrase preceding the verb phrase could be counted upon to be
the subject, with the noun phrase following the verb to have
the object.
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However, an intransitive sentence does not have a

direct object, as in this example:

I WAS DISTRACTED.

Additionally, the sentence could be in passive voice,
such as:

I WAS CONFUSED BY THE MOVEMENT OF THE PLANE.

rather than in the active voice, as in:

THE MOVEMENT OF THE PLANE CONFUSED ME.

In some cases, the subject may be an interrogatory
pronoun, as in:

WHO IS SPEAKING NOW?

For these reasons and others, a sentence specialist was
needed to locate the subject noun, verb and object noun (if
any). It did this basically by noting the order of the
phrases in the sentence and then classifying the sentence by
type and voice so that the appropriate phrases would be
identified. Once the identification was complete, the
subject, object, etc., were also noted on the parse
blackboard.

Production Unit. The production unit was the module
responsible for generating verbal responses in the system's
dialogue with the student or human instructor. It was
decided that we should explore sentence generaton, even
though the current application was small enough that most
responses from the system could have been of the
script-based, preprogrammed type. The function of the
sentence production unit was to take information passed from
the understander, and transform it into a grammatically
correct verbal response, just as a human's verbal response
may begin with some sort of deep structure. An explanation
of how the production unit functions will involve a
description of the type of information it received from the
understander, how it looked up words in the lexicon and how
it transformed individual word units into a sentence.

When the system would have to make a verbal response to
a user, student or human instructor, it would record and
modify certain kernel thoughts on the blackboard (again an
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analogical reference to a modifiable bit of data used by
several modules). This blackboard would contain references
to a subject, object, verb and any modifying nouns,
adjectives or adverbs. Figure 19 shows an example of such a

*list of entries.

STUDENT : Subject Tense Past
\TREND : Object Number : Singular
DETECT : Verb Person : Second
\NOT : Negative Progression : Static

S type : Y/N
Destination : Student

Source : System

Figure 19. Blackboard entries, in a form
available for sentence production

Inherent in this information being passed to the
production unit is the indication that the subject of the
sentence is to be the student, the verb -- "DETECT," the
object -- "TREND," and the verb is to have a negating
modifier -- "NOT." The backslash preceding TREND was simply
an internal code that the entry was to be used without any
evaluation or modification (similar to the use of a single
quote in LISP). In contrast, the verb would need
modification, in this case, tense. The second series of
entries pertained to the grammatical characteristics to be
produced. As can be seen, the sentence was to be in the
past tense, second person singular, and with the verb not of
progressive form.

The type of sentence to be produced was a yes/no
("Y/N") interrogatory. Furthermore, the destination of the
communication was the student, in this case also the subject
of the sentence, with the system as the source.

To create the sentence, all unquoted entries (those
without the backslash) would be evaluated. In the case of
the subject, if the entry was the same as the destination,
it would be replaced by the pronoun "you," but if the source
were the subject, it would be replaced by "I." The
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evaluation of the verb, of course, would be that of
determining tense.

In going to the lexicon in search of DETECT the various
other tense forms also would be found, for example:

(DETECT DETECTS DETECTED DETECTING).

Because the sentence to be produced in the example was
an interrogatory, the tense was to be indicated by an
auxiliary verb, in this case "did." As could be expected,
the tense evaluation was via a series of if-then rules based
not only on the "tense" entry, but also on sentence type,
progression, person and number.

Following the evaluation of the entries on the
blackboard, the production unit first would assemble the
words into phrases and then the phrases into a sentence
using the logical equivalent of the rewrite rules shown in
Figure 20.

1. S -- NP(Subj) + VP + NP(Obj)
2. S -- Aux + NP(Subj) + VP + NP(ObJ) + ?
3. S-- Wh- + Aux + NP(Subj) + VP + NP(Obj) + ?
4. NP(Subj)-- Noun(Subj)
5. NP(Subj)---4 Adj(Subj) + NP(Subj)
6. NP(Subj)-- Art + NP(Subj)
7. NP(Subj) NP(Subj) + PP(Subj)
8. PP(Subj) - Prep + NP(PP-Subj)
9. VP --- Verb

10. VP - Adv + VP
11. VP -- VP = PP(Verb)

Rewrite rules used to construct the phrases where
S=sentence, NP=noun phrase, VP=verb phrase, PP=prepo-
sitional phrase, AUX=auxiliary verb, and Wh- is a
VWh- word (e.g. who). Rules for generation of NP(Obj)
were similar to rules 4 - 8.

Figure 20. Rewrite rules.

These rules 'onstituted a simple phrase structure grammar,
sufficient for our use.
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To make use of the rules in Figure 20, words not
supplied directly by the understander would need to be
looked up in the lexicon. For example, say that the
understander had supplied

(PLANE(SUBJ)) and (3-MI MARK ((PPSUBJ)(LOC))

as words from which to construct a noun phrase. The first
entry, as denoted, is to be used as the subject of the
sentence, while the second entry, as denoted, is to be the
object of a prepositional phrase, which in turn modifies the
subject. Beginning with the first entry, Rule 4 is applied
to start the NP. Rule 5 is not used, because there was no
adjective supplied. Rule 6 is used, however, where an
article "the" is added to the string. In applying Rules 4,6
and 8 to the second entry, an appropriate preposition must
be sought. In finding a preposition, the production unit
consults a table of prepositions in the lexicon. The
listing contains prepositions along with a node label
referring to one of the concepts shown in Figure 9.

These listings would look like the following:

BEFORE (TIME)
AT (LOC TIME)
UNTIL (TIME)

hS (EQUATIVE)

Because the entry "3-MI MARK ((PP-SUBJ)(LOC))" contains
a location referent, the search is made for a preposition
that denotes location -- "AT." For simplicity, the search
ended with the first preposition found with the correct
referent. (A largeL interface would not use this particular
approach.) In selecting the preposition, Rule 8 could be
completed, resulting in "at the 3-mile mark." Using Rule 7,
we now have the "plane at the 3-mile mark" as the NP(Subj).

The use of one of the first three rules to construct a
sentence from the phrases depends on the type of sentence.
Rule 1 covers simple declarative and imperative sentences,
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with Rule 2 producing Y/N interrogatory and Rule 3 wh-
interrogatory. In the case of the interrogatories,
auxiliary verbs and wh- words also are obtained from the
lexicon.

As with the prepositions, the wh- words are listed

along with their node labels, for example:

WHEN (TIME)
WHERE (LOC)
WHO (AGENT)

The production unit is simple and limited, but it will
produce sentences like the following:

DID YOU NOT SAY THE CALL?
DID YOU FORGET THE ADVISORY?
WHAT DID CAUSE THE STAMMER?

WERE YOU NOT LOOKING AT THE AZIMUTH?
DID YOU NOT REMEMBER THE PREVIOUS CALL?

WHO IS NOW SPEAKING?

In fact, it will produce a far greater variation in
sentences than our simple understander can handle. Its
simplicity does cause a few awkward phrasings, however, such
as, "What did cause the stammer?"

One of the weak points is the selection of the

preposition. If the understander passes the following:

STUDENT : subject

LOOK : verb
\AZIMUTH : PP-verb

\NOT : neg

to the production unit, along with sentence features, it
produces "Were you not looking at the azimuth?" However, if
the verb "WATCH" is substituted for "LOOK," (because it
represents the same PROC -- SCAN), you get, "Were you not
watching at the azimuth?"
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Furthermore, sentences slightly more complex cannot be

generated, such as:

DID YOU HAVE TROUBLE VERBALIZING THE CALL?

Something like this would be generated:

COULD YOU NOT VERBALIZE THE CALL?

Thus, as in the parser, the production unit is limited to

simple sentence forms, i.e., no compound sentences,
subordinate clauses, gerunds, etc.

Understander. The understander is the section of the

interface that accepts instruction from the diagnostics unit
and translates the instructions into a form that the
production unit can use to generate a response or query for
the student. It then translates the parsed input from the
student into further instructions for the production of
another response from the system, or sends the appropriate
answer back to the diagnostics module. Figure 21 summarizes
the relationship between modules.

!-

I Interface

Parser

Student

Diagnostics H Understander
Product]ion

Unit

Figure 21. Overview of the relationship
of the interface components
with diagnostics.
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The understander probably is the most limited of the
three components of the interface. The parser and
production unit can accept and produce much more than the

" understander can handle, and they easily could be expanded
to do even more. It was not necessary to build an extensive
dedfctive inference system on the current project, and so
the u nderstander was developed simplistically to deal with
the types of propositions diagnostics would generate in its
constant assessment of the student's status.

Recall that the task of the diagnostics component was
to generate hypotheses about the causes of an error. The
causes, of course, would necessarily involve one or more of
the basic PROCS. The PROC that was to have been executed
may have been inefficient enough to have been prematurely
terminated, resulting in a missed call or a guess (using
default values), which yielded an incorrect call of some
form. However, the problem may have resided in a previous
stage (PROC), which either passed erroneous information on
to the present PROC, or inadvertently terminated the whole
processing sequence before the present PROC was even
activated. Additionally, the problem could lie in a
subsequent PROC further down the processing sequence.
Distraction, the diversion of needed resources, during the
execution of an otherwise sound PROC is another possibility.
To augment the function of diagnostics, an ability to

* interact with the student clearly was needed. This
interaction naturally would concern the hypothesized problem
PROC, at least initially.

The flow of execution of the principal functions of the
understander can be found in Figure 22. The process would
begin with the diagnostics unit passing a hypothesis to the
understander and the setting of a goal which was to verify
the hypothesis. The hypothesis would take the form of
naming a PROC that might have been suspected as the most
probable cause of the error in question. For example, the
hypothesis passed might simply be DETECT.
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DETECT

TYPE ?
INPUT SCAN
OUTPUT COMP
SUBJECT (STUDENT) AGENT
VERB (\PERCEIVE) DETECT
PREP V *12
OBJECT (\PLANE) OBJECT
PREP 0 (\THIS POINT) TIME

Figure 23. DETECT frame as it is when
brought in from the data base.

At this point, it would be logically equivalent to the

predicate:

DETECT (TYPE, AGENT, OBJECT, RELATION, TIME).

Because the system has a specific error to which it is
making reference, the argument can be given values. (It
will be recalled that the diagnostics unit is giving a
"playback" of the last approach to the student and has
frozen the "playback" at the point that a particular error
had occurred. In the present example, it was, for instance,
an error in making a position call).

With the values filled in, the predicate becomes a

proposition of the form:

DETECT (POS, STUDENT, PLANE, ABOVE GLIDEPATH, 3.2 MI)

which has a truth value, i.e., the proposition that the
student did detect the plane as above glidepath by the time
the plane was at the 3.2-mile point is either true or false.
Therefore, the goal of the interrogation is to verify the
proposition (determine its truth value).
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Similarly, the frame when instantiated would look as
shown in Figure 24.

DETECT

TYPE POSITION
INPUT SCAN
OUTPUT COMP
SUBJECT (STUDENT) AGENT
VERB (\PERCEIVE) DETECT
PREP V \ABOVE GLIDEPATH POSITION
OBJECT (\PLANE) OBJECT
PREP 0 (\THIS POINT) TIME

Figure 24. An example of an instantiated PROC.

In the instantiation process, the slots are filled in
with the information at hand. In the example, the surface
error might have been an incorrect advisory. The advisory
should have been "ABOVE GLIDEPATH," and the position should
have been DETECTed by mile 3.2. The initial entry for PREP
V, (which was *12), represents symbolically a pointer to a
program fragment that would give the understander access to
the current position. The same could have been done for
"time," (PREP 0), but the prepositional phrase it produced,
"at 3.2 mile" sounded too mechanical. Thus, the idiom "\THIS
POINT," which produced "at this point," was inserted to
obtain a more natural flow.

In addition to the frame selection and the
instantiation processes, the instantiated frame was written
to the blackboard to ultimately be used by the production
unit. Production of a question would immediately ensue
unless a slot entry was missing, which would cause a goal
change. For the sake of continuity, however, the discussion
of the handling of goal changes will be postponed until
later in this section.
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The production unit would take the information from the
blackboard and produce a question that would be displayed
for the student.

In the case of our example, the query generated was:

DID YOU PERCEIVE AT THIS POINT THE PLANE AT ABOVE GLIDEPATH?

The phrasing was somewhat awkward because of our
simplistic treatment of prepositions and their connotations,
and the fact that our rewrite rules in the production unit
always put a prepositional phrase directly behind the word
that it modified (Rules 7 and 8 in Figure 20). It seemed,
however, to be a phrasing that communicated adequately. In
fact, one could get used to the construction, which in turn
probably could affect one's report writing skills.

Once the question is displayed, the next action taken
by the interface would be the parsing of the student's
input. The student could have answered with a mere "yes" or
no, which would immediately affirm or negate the

proposition, thus resolving the current goal. Other
possible and more complex responses are likely to occur,
however.

The student could have affirmed the proposition by
restating it as:

I PERCEIVED IT AS ABOVE GLIDEPATH.

In another variant, he could have used a different verb:

I DETECTED IT CORRECTLY.

He also could assume a context, as in:

I DID.

Other possible responses come from a changing of the
topic in the interrogation. The student could resond with:

I O0 NOT REMEMBER,

or with:

I WAS NOT LOOKING AT THE PLANE AT THE TIME.
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In order to explain how the understander deals with the
student input, the first two examples will be discussed
first.

As shown in Figure 22, the first operations on the
student's input are frame selection and instantiation.
Unlike the first time, this function was called (when the
frame was selected on the basis of the hypothesis), this
time it is based on the main verb in the student's input.
Once instantiated, it is written to the blackboard alongside
(logically speaking) the previous frame that produced the
query. In the first example, the student used the same verb
as the system ("PERCEIVE"), thus the frame accessed would be
identical. In the second example, the verb "DETECT" was
used. In its search for the frame, the understander first
must consult the lexicon where the verbs are referenced by
the underlying PROCS that they might represent. Figure 25
shows the functional form of the verb entries in the lexicon
with their associated referents.

PERCEIVE DETECT
DETECT DETECT
FIGURE MCOMP
THINK MCOMP
PROCESS MCOMP
REMEMBER RETRIEVE
LOOK SCAN
ATTEND SCAN

Figure 25. A portion of the verb list
showing the verbs listed
with the underlying PROC

4 that they represent

It can be seen that DETECT and PERCEIVE as listed were
thought to represent the same detection process. Thus, when
the frame selection routine is executed, the same frame
would be brought in by either of the two verbs. Using the
second exemplar sentence for instantiation ("I DETECTED IT
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CORRECTLY"), the blackboard would be functionally arranged
as in Table 5. When written to the blackboard, the subject
is changed from "I" to "STUDENT" and the verb put into
present tense. Default words that come with the frame have
now been replaced by the inputs from the student.

TABLE 5. STUDENT INPUT ADDED TO BLACKBOARD FOR COMPARISON

From Student's
DETECT Hypothesis Input

TYPE POSITION
INPUT SCAN SCAN
OUTPUT COMP COMP
SUBJECT (STUDENT) STUDENT AGENT
VERB (\PERCEIVE) DETECT DETECT
PREP V (\ABOVE GLIDEPATH) POSITION
OBJECT (\PLANE) IT OBJECT
PREP 0 (\THIS POINT) TIME

CORRECTLY

It will be recalled that the current goal was to

determine the truth value of the proposition.

DETECT (POS, STUDENT, PLANE, ABOVE GLIDEPATH, 3.2 MI).

The student has responded with a statement that can be
considered a second proposition where the truth value, as
specified by the student, is true. What remains is for the
understander to determine whether or not the second
proposition is saying the same thing as the first. To do
that, it interprets the second proposition within the
context of the first. In comparing the verbs, both refer to
the same underlying PROC, thus both reference the same
action. The agent is the student in both cases. However,
the objects differ, i.e., "PLANE" does not equal "IT." The
word IT is a pronoun and is designated so lexically. Thus,
in comparisons, IT has no meaning in its own right and
therefore acquires the meaning of the other object within
the context. So the judgment is that PLANE = IT. Should
the student respond with a synonym (e.g., "AIRCRAFT"), the
noun list also contains a referent with each entry. Thus,
AIRCRAFT would have been judged identical to PLANE. The
entries for position and time are handled the same way as
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the object entry. The student's response did not give any
position or time references. The action taken by the
understander in such cases is to interpret blanks within the
context as you would a pronoun. It is assumed that if the
student had disagreed with either the position or time
specifications, the student would have offered his own
alternatives. Thus, a simple heuristic, absence of an
entry, is implicit agreement.

In comparing the two propositions on the context
blackboard as just described, the propositions are judged
equivalent. Because the proposition given by the student
was presumed to be true, the proposition generated from the
hypothesis also would be true. The proposition being true
then would indicate that the student did in fact perceive
the plane in the position that he should have. Therefore,
the original hypothesis would be false; the problem did not
lie in the detection process. The fact that the hypothesis
was not confirmed would be sent back to the diagnostics
module, which would have the option of creating another
hypothesis and starting another question-answer cycle.

The simplistic technique of comparing the student's
input with the initial proposition, works well when the
student responds in a way in which there is little change in
the context. However, let us return to a previous example
where the student's response referred to a different PROC.

The example was:

I WAS NOT LOOKING AT THE PLANE AT TIME TIME.

As can be seen in Figure 25, the verb "LOOK" represents a
SCAN and not a DETECT, thus changing the context.

The sentence by itself, however, represents a
proposition in its own right, which would be:

SCAN (STUDENT, PLANE, 3.2 MI)

with a truth value of "false." The student essentially has
told the system the source of the problem. The understander
would not be aware of that fact, however, and would simply
pass the information (false proposition) on to the
diagnostics component. The diagnostics component still
might have the understander ask whether the student had
detected the plane, if it were not for the fact that SCAN
must be fulfilled before DETECTion can occur. (This
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information is applied in the frame as shown in Figure 23 in
the "INPUT" slot.) Now diagnostics has found the source of
the problem and need go no further.

The understander can handle a change in verbs and
contexts as long as the student is offering another
proposition about a different PROC, but if the student
responds with a verb that makes no reference to a PROC, it

* is a little more difficult to relate it to the original
question. Certain verb changes can be handled with
predesigned program fragments if those changes were to
happen frequently enough to be anticipated.

Such would be the case for "REMEMBER" or "KNOW" in the
responses"

I CANNOT REMEMBER.

or,

I DO NOT KNOW THE REASON.

If the student were to respond with an idiom or a
unique phrasing of some kind, such as:

BEATS ME!
I HAVE NO IDEA.

THE SCREEN IS NOT IN FOCUS.
I AM GETTING TIRED.

the understander then would have to respond with an
indication that it doesn't understand.

It would make the same indication if the student were
to respond with sentences that were too complex, such as:

I WAS HAVING TROUBLE KEEPING MY ATTENTION ON THE AZIMUTH.

In part, some of the limitations are caused by the
simplicity of the understander's current design. A larger
natural language interface would have no problem with that
last sentence. However, it should be noted that even the
most complex interfaces need to operate within a restricted
domain.

To complete the description of the understander, we
need to return to a point that was only mentioned briefly.
Remember that in the course of filling frame slots, there
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was the possibility that there was insufficient information
available with which to satisfy the slot requirements. When
such an instance occurred, Figure 22 indicated that a new
goal was to be formulated. The interface possessed a
push-down goal stack by which it kept track of its current
intentions. When a hypothesis was passed to the interface
from the diagnostics module, the goal placed in the goal
stack was to verify the proposition of the PROC which was
named (denoted VERIFY(PROC)). Before the goal could be
resolved, another need may arise such as the need to get
information from the student regarding a slot entry. In
that case a new goal (e.g., SEARCH (SLOT ENTRY)) would be
placed on the top of the stack, pushing the old one down.

With the goal set for the search for a slot entry, the
production unit uses the information to construct a wh-
question like

WHAT DID YOU PERCEIVE?

with the exact form (what, where, etc.) being dependent on
whether the missing slot entry was a subject, object, time,
etc. Once the goal on the top of the stack was resolved, it
was removed, allowing the old one to emerge again. The
dialogue between the interface and the student then would
continue until all the goals in the stack had been removed,
or a comment from the student (such as, the student's not
remembering anything) caused the process to exit. The types
of goals the interface was designed to handle were: VERIFY,
TELL, SEARCH and COMMAND, with varying arguments.

Adjusting the Student Model. Up to this point we have
focused on the diagnosis of the causes of errors. However,
the CRAI's adjustment of its model of the state of the
student's cognitive processes is not solely error-driven.
It is the nature of the task environment that errors are
indicative of discrepancies between what the CRAI determined
the student should be capable of, and the student's actual
abilities, i.e., a discrepancy between CRAI's student model
and the actual state of the student. Furthermore, because
any one of the hypothesized cognitive processes could cause
a task failure, it is the nature of the inference process
that numerous and complicated algorithms are necessary to
discern the nature of this discrepancy. Therefore, a large
portion of a trainer development effort can be expected to
be devoted to developing these algorithms. On the other
hand, pedagogically, the students successful task
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performance is strategically important. Indeed, if the
student exceeds expectations this also indicates a
discrepancy between the model and the student's actual
state. However, because all of the cognitive components
must function satisfactorily to yield a successful
performance, the inference process is vastly simplified:
one can assume an increment in the proficiency of each
contributing component.

The psychological literature, reviewed in our
discussion of the essential student features in Section II,
suggests that in cognitive processing, proficiency should be
positively correlated with processing speed. Indeed,
reaction time or response latency has been used in many
studies as a dependent measure of proficiency. The present
task environment precludes the use of a precise response
latency measure because the target stimuli are continuous,
i.e., there is no onset point from which to measure latency.
One approximation, of this type of measure is available by
measuring the time between successive advisories. If an
advisory is missed no measurement can be made for that
"non-advisory" or for the next advisory. In this case, some
default estimate is needed. We shall call the measurement
associated with an observed event (or non-event) the
proficiency measure (PM) for that event.

The assumption of an action sequence leading to the
observed response, implies that the PM is a function of the
proficiencies of the components of that sequence.
Similarly, the expected proficiency (EP) measurement for a
projected response would be a function of the expected
proficiencies of each of the components of the sequence
leading to that response. One of the attributes of each of
the PROCS in the IKB is a proficiency score. The initial
value of this score is an estimate of a cognitive
component's contribution to the EP of a given action
sequence. EP is the sum of the proficiency scores of each
of the components of the action sequence.

Figure 26 illustrates the four logical outcome
possiblities and the associated implications for adjustment
of the student model. Te first step in the adjustment
procedure is to build a model of the particular action
sequence leading to the observed response. If a response is
missing then the model assumed is that of the response which
would have been appropriate. As outlined in our discussion
concerning elaborating the student model, one of the
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attributes of each PROC in the IKB is INPUT. The value of

this attribute is a pointer to the specific PROC which led

to the present one. To build a model of the response's

action sequence, the CRAI starts with the observed, or

appropriate, verbal response. It then traces back via the

INPUT attribute the sequence of PROCS that preceded it. In

parallel with this search, the CRAI retrieves and sums the

proficiency score of each component PROC. The resulting sum

is the EP associated with verbal response.

PM < EP PM > EP

ERROR No Adjustment Adjust the Cognitive
DETECTED is Component(s) of

Made Cause

CORRECT Adjust All No Adjustment
ADVISORY Components is

Made

Figure 26. Possible outcome combinations.

The default estimate, if needed, is a function of the

EP's for all of the advisories required on the approach.
The rationale of this default is a product of the method of

computing the task scenario which will be explained later.
If a single PROC is determined to be a source of error, then

the entire difference between the PM and EP is assumed to be
associated with this PROC. The difference is then added to

4the proficiency score of the PROC. If more than one PROC

remain candidates for the cause after analysis and
interrogation, then the PM-EP difference is allocated
between the PROCS in proportion to their relative
contributions to the EP. The assumption is that variance in
a PROC's proficiency score would be proportional to that
score. Similarly, if a verbal response is successful and
the PM is less than the EP the proficiency scores of the

component PROCS are proportionately decremented by the
absolute difference. No adjustment is made when an error is

accompanied by a PM which is less than the EP. The error

inherently indicates that an improvement in the EP is not
4called for. Subsequently, an appropriate decrement for the

EP can not be determined in this case. No adjustment is
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made when a successful advisory is accompanied by a PM which
is greater than the EP. This situation may arise because
the paced nature of the task dictates a PM which is worse
than the student's actual capabilities would warrant.

THE CURRICULUM DRIVER. The curriculum driver utilizes the
* adjusted student model to direct a search through the
* possible approach scenarios in order to select the one which
*should yield the greatest improvement in student learning.

It will be recalled that the results of our simulation
experiment with the turnpike solution indicated that the
greatest increment is achieved on each trial by applying the
greatest resources to the least learned component. The
curriculum driver applies this principle to scenario
generation.

The various approach scenarios can be represented by a
tree diagram (see Figure 2,. The nodes of the tree
represent the possible values of the denoted task
parameters. Figure 27 is only a partial tree for
illustrative purposes. The actual tree, representative of
the INSTRUCT task would have seven elevation nodes, each
with subsequent branches. Note that the number of possible
branches grows geometrically at successively lower levels of
the tree.

The curriculum driver is representative of a branch and
bound search technique. The driver searches the branches of
the scenario tree subject to the constraints of optimizing
the expected learning of the student during the next
practice task and the physical realities of the task. A
primary goal of any search technique is to find the optimal
solution to a problem as efficiently as possible. In a tree
search this essentially means exploring as few branches as
possible without missing that branch which leads to the
optimal solution. Because the number of branches increases
geometrically as one moves from the start node toward the
myriad termination nodes, this efficiency is achieved by
ordering constraining contingencies such that they limit the
possible branches to be explored as early as is feasible.
Feasibility is a function of the probability of overlooking
the optimum solution and the value of finding that solution.
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STAR

27 20

ELEVATION 4 5

MAXIMUM
DEVIATION 0 1 2 0 1

TR~END U D U D U D U D U D

PILOT
ABILITY LHLHLHLHLH® H L

Figure 27. A scenario tree.

* In INSTRUCT the constraints of the physical realities
of the task are constant, but optimizing the expected
learning of the student is contingent upon the current
learning state of that student. This state is represented
in the student model.

The first step then is to have the curriculum driver
retrieve the EP for each of the seven elevation advisories.
This is done in the same way as explained for model
adjustment. For each combination of task parameters, i.e.,
each approach scenario, a pattern of ten verbal responses
with their associated EP's can be generated. The sum of
these ten EP's for a given approach scenario would be
indicative of the overall learning level associated with
that scenario. Note that since these values are
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representative of a latency type measure they would be
negatively correlated to proficiency, i.e., a higher number
indicates a lower proficiency.

As per our earlier description of the task, the
flightpath of the target plane varies around a selected
average glidepath. A trivial optimal solution to the search
would be to select the elevation with the highest EP and
maintain the target at that level for the entire approach.
However, it would seem psycnologically reasonable to assume
that the second successive advisory for a given elevation
would not require the same degree of processing as the
first, since various encoding steps would not have to be
repeated. This is certainly true for the simulated student.
Therefore, the curriculum driver reduces the EP for a
successive advisory for the same elevation. The trivial
solution is a logical boundary. It illustrates that any
other optimum solution would have to be constructed around
the elevation with the highest EP. Thus, the first search
constraint is to select the branch corresponding to this
elevation. The values indicated next to each of the top
branches in Figure 27 represent the EP associated with the
indicated elevation. The constraint eliminates the

*necessity for searching the six remaining branches and their
many associated scenarios.

Once the first branching decision is made, the only
remaining constraints which may be exploited are the
physical constraints of the task. For example, in our task
the target is not allowed to leave the glidepath completely.
Therefore, a scenario which would call for an average
elevation of above glidepath with a maximum deviation of two
zones above and below this elevation would not be permitted.
Thus it is possible to constrain the search from examining
all possible combinations of task parameter values. These
constraints may be efficiently ordered. The selection of
the average glidepath and a maximum deviation constrain
whether the initial trend will be rising or falli:'g.
Setting these three parameters constrain whether the plane
can cross the average glid-,nath. In the above example, a
maximum deviation of two zones would be acceptable if the
trend was downward, and if the target never rose to the
maximum deviation above the glidepath.

Within the constraints outlined above, ar. EP sum is
calculated for each feasible scenario. The curriculum
driver then simply selects the scenario with the largest
associated EP sum.

94g4



AD-R124 126 INSTRUCT: AN EXAMPLE OF THE ROLE OF ARTIFICIAL 2/2
1NTELLIGENCE IN VOICE-BASE..(U) BEHAVIORAL EVALUATION

I AND TRAINING SYSTEMS LUBBOCK TX D C CHATFIELD ET AL.

UNCLASS7FIED JAN 83 NAVTRAEGUIPC-80-C-8BSGI F/G 5/9 ,.NL

mhhhhhmmEND

I lfllllmhhh



.2.

111

MIRCP EOUINTS HR
NAINLBREUO TNDRS16-

IJ



NAVTRAEQUIPCEN80-C-0061-1

The four task parameters, average glidepath elevation,
maximum glidepath variation, initial glidepath trend, and
pilot ability, are representative of what we call state
determined task variables. Their selection is a function of
the student's learning state, as that state is represented
in the student model. However, an optimal pedagogical
strategy must be based not only on the present state of the
student but on the rate at which that state will change.
Two students may start at the same state but their rate of
progress may differ. The CRAI should be able to adapt the
task to each individual so as to progress that individual as
quickly as the individual's abilities allow. In the
INSTRUCT task the plane's speed is such an adaptive
parameter. Once the state parameters are determined, a too
slow speed will unnecessarily impede the student's progress
toward full task speed ability. On the other hand, a too
fast speed will prevent the student from ever fully encoding
advisories. Hence, it too will impede the student's
progress. One test of the CRAI's pedagogical effectiveness
is its ability to detect differences between students and
adapt its scenario generation accordingly.
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SECTION V

SIMULATIONS AND RESULTS

STUDENT BEHAVIOR

Our first experiment was to examine if the simulated
student exhibited behaviors representative of novices.
Therefore, we sat the student down at the display tube and
observed its behavior. Before its first approach, the

simulated student has read the instructional manual, i.e.,
it "knows" all of the appropriate advisories and the rules
governing when they are to be issued. However, it has had
no practice doing any of the cognitive acts required by the

task. Its process learning level is zero.

Table 6 contains a response protocol taken from the

third approach of the student. The second column contains
the exact glidepath elevation of the target. For example a

target with an elevation which is greater than or equal to 3
but less than 4 is in zone 3.

TABLE 6. A REPRESENTATIVE VERBAL REPONSE PROTOCOL.

DISTANCE POSITION ADVISORY

9.98162 5.99815 MM...ABOVE GLIDEPATH

8.93772 4.32417 UH...SLIGHTLY ABOVE GLIDEPATH

7.93302 3.01148 WELL BELOW GLIDEPATH

6.84185. 4.89402 SLIGHTLY ABOVE GLIDEPATH

5.926 5.98683 UH...WELL BELOW GLIDEPATH

4.99747 4.47103 ABOVE GLIDEPATH

.988574 4.45564 SLIGHTLY ABOVE GLIDEPATH

Three instances of phrasing problems are immediately
apparent in this protocol on advisories one, two, and five.
Admittedly, real students' phrasing problems do not look
like these. However, as far as the CRAI is concerned these
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representations are just as uninterpretable as any more
elaborate production would be. Therefore, no attempt was
made to emulate more elaborate behavior. Two forms of

* phrasing errors can be seen. The "MM..." form indicates to
the experimenter that the student had completed verbal
encoding before the response was made. The "UH..." form
indicates encoding was not complete. Notice that the second
advisory is correct, other than phrasing, even though the
form definitively indicates it was a guess. The distinction
between forms was solely to aid our analysis of CRAI
performance. The CRAI can not distinguish between the two
forms. We have assumed a worst case voice recognition
system with limited interpretive flexibility, for testing
our implementation ideas. These verbal production problems
completely disappear with training.

Next, one will notice that the student tends to make
all of the advisories slightly late. The slight time lags
represented here were defined as acceptable. An
unacceptable lag would be equal to or greater than half of a
mile. With training, not only does the student stop making
advisories late (and stops missing them) but the time lag is
significantly shortened.

Although there were no definitionally late advisories
in this protocol, three advisories were missed. They should
have occurred at markers four, three and two. We found that
the simulated student gets behind as real students do. This
behavior also often is preceded by an error, which forecasts
a problem exists.

The student made two outright errors in this protocol
on advisories three and six. The first error is obviously a
guess. A guess this wild may not be frequent among real
students. We did not program the CRAI to distinguish
between close guesses and wild ones. Thus, this type of
possibly unrepresentative behavior was not deemed fatal in
any way. The second wrong advisory could be caused by a
number of factors. Its phrasing is correct, but it still
could be a guess. A second possibility is that the target
was inaccurately detected. These two events simulate the
observation of Chatfield et al. (1979), that wrong
advisories could occur from processing errors even with
perfect knowledge (albeit not necessarily perfect knowledge
organization). As would be expected, wrong advisories cease
with practice.
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The student has also managed to make two completely
correct advisories on advisory four and ten, even though an
error is made on this same elevation on advisory six.
Correct advisories, of course, increased with practice.

CRAI INFERENCE.

We examined the CRAI's ability to infer the covert
causes of the student's mistakes. We tested this ability
under the worst case condition, i.e., that the student
cannot introspect at all. We did this for two reasons.
First, it is the most severe test of the CRAI's inherent
inferential ability. Second, any degree of introspection
introduced would be arbitrary and would limit
interpretation. We also imposed a second difficulty on the
CRAI, by examining the inferential ability during early
student approaches. It is during these approaches that
phrasing/speech degradation is the greatest problem.
Without the interrogatory interface the CRAI can not
distinguish an ill-phrased response from a speech-degraded
response. However, phrasing/speech degradation was included
as a diagnostic event in the CEDS. We wished to see if the
system could inherently extract meaningful information from
these advisories. Four approaches were examined: two
approaches each from two students of different learning
abilities.

The first analysis is summarized in Table 7. The CRAI
often proposed more than one possible cause. However, an
examination of the student's cognitive monitor revealed that
some errors in fact had more than one cause. A "hit" was
defined as any time the CRAI indicated a true cause. A
miss" was defined as any time the CRAI failed to infer a
true cause. We did not analyse the number of "false
alarms", i.e., the number of times the CRAI indicated a
false cause. If introspection were allowed, most likely a
large portion of these would be dismissed. However, the
size of that proportion can not be unambiguously determined
since it would depend on the students' ability to
introspect.

As can be seen from the table, the CRAI did quite well
in this analysis. Overall it correctly identified the cause
of an error 75 percent of the time. Phrasing problems did
tend to inhibit the inferential ability to some degree. The
hit rate decreases to 72.4 percent under this condition.
This would be expected. Because the system can not
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inherently interpret the semantic meaning of an ill-phrased
verbal response, correct responses can not be distinguished

* from incorrect ones. As mentioned in our description of the
* diagnostic module, the interrogatory interface was developed

to resolve this type of ambiguity. Through questioning the
*- student, the CRAI could determine the meaning of the

ill-phrased response. Indeed, there is a diagnostic value
to the distinction between an ill-phrased but otherwise
correct response and an incorrect one. We would expect this
additional information would raise the hit rate on
advisories with phrasing problems.

TABLE 7. TABULATION OF HITS AND MISSES BY PHRASING.

CAUSES CAUSES
HIT MISSED

ILL-PHRASE/DEGRADED 21 8

CLEARLY PHRASED. 9 2*

30 10 40

*One advisory was a correct guess

When the verbal response was not obscured by phrasing
problems, the CRAI scored a hit 81.8 percent of the time.
One of the two misses, in fact, would have probably slipped
by a human instructor, since the verbal response was
correct. Only by examining the cognitive monitor was it
possible to determine this response was really a guess.

If the CRAI simply hypothesized all causes all the time
it would never miss. Table 8 lists the eight different
hypotheses available to the CRAI. The last six of these
hypotheses are indicative of covert causes.
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TABLE 8. POSSIBLE CRAI HYPOTHESES.

OVERT COVERT
CAUSES CAUSES
----- --------------------------------------------

Late Previous Call Inefficient DETECT
Late Boundary Crossing Inefficient PCOMP

Inefficient CALL
Didn't SCAN area
Late SCAN
Incorrect Structure.

-----------------------------------------------

Table 9 reveals that the CRAI never made more than
three hypotheses. In fact, 22.5 percent of the inferences
were single hypotheses. The CRAI scored a hit on five out
of the seven. However, because of multiple-cause errors, it
missed four true causes.

TABLE 9. TABULATION OF THE NUMBER OF HYPOTHESES PER
ERROR BY TYPE OF PHRASING.

ILL-PHRASED/ CLEARLY

HYPOTHESES DEGRADED PHRASED TOTAL

SINGLE 6 1 7

DOUBLE 13 1 14

TRIPLE 1 9 10

We also examined the effect of phrasing difficulties on
the number of hypotheses issued for each error. Table 9
also summarizes this data. It appears that phrasing/speech
degradation can have diagnostic value, at least regarding
our simulated student. This is indicated by the higher
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frequency of single and double hypothesis inferences when
phrasing/speech degradation problems are identified.

SCENARIO ADAPTATION

Next we examined the CRAI's ability to distinguish
between students of different abilities and to adapt the
training curriculum accordingly. Figure 28 illustrates the
relative verbal encoding learning curves for the three
students.

100 +++ ****

96 + **
92 + **
88 * --

84 + * --

80 * -

76 + --

72 * -

68 + -

64
60-
56
52 + -
48 * - + Top student
44 * Mid student
40 - - Low student
36 *
32 +-
28
24 *-
20
16
12
8
4
0

Figure 28. Verbal ncoding progress rate
of three simulated students.
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We first examined the CRAI's decisions regarding the
state parameters. We found no change in the pilot ability
factor either within or between students. This factor
affects the degree to which the target crosses the average
glidepath elevation. The CRAI kept the pilot ability low
(i.e., the target crossed often). This merely indicates
that the students' learning level for advisories above and
below the average glidepath were roughly symmetrical. The
initial trend parameter showed no meaningful pattern. This
would be expected in view of the pilot ability factor. In
addition this factor serves largely as a control factor
constraining the target when the average glidepath elevation
is near the extremes.

The state parameters whose patterns are most revealing
are those for average glidepath elevation and maximum
deviation. These results are summarized in Table 10. A
clear trend is apparent. First, all students start with the
same scenario. This is expected because the learning state
for all three students was initially identical, only their
learning rates differed. The CRAI appears to have
distinguished this fact. Note that the top student is
advanced to covering below glidepath advisories immediately
following the first approach. The middle student isn't
advanced until the fourth approach, and the lowest student
not until the fifth. Also of note is the way in which the
CRAI manipulated the deviation factor in conjunction with
elevation. The top student is given broad experience up to
the third approach, when the CRAI apparently determined the
necessity for more specific practice. For the lower student
this narrowing of task focus comes earlier, and the focus is
on repeating the above glidepath advisories. The CRAI
appears to be saying, "Keep going over these advisories
until you get them right."
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TABLE 10. STATE PARAMETERS FOR THREE DIFFERENT STUDENTS.

TOP MID LOW
STUDENT STUDENT STUDENT
4/2*- 4/2-4/2

4/2" 4/2 4/2

S2/2 4/1 4/2

2/2 5/1 4/1

1/1 2/1 5/1

5/1 1/1 1/1

*The first figure is the average glidepath elevation.
The second figure is the maximum zone variation.

The CRAI's adaptive ability is further evidenced by its
manipulation of the adaptive parameter -- speed. These
results are summarized in Table 11. For the top student the
CRAI increased the speed of the plane almost constantly.
The one place where speed was decreased was when the CRAI
had the student repeat an approach scenario. For the middle
student, the CRAI kept the speed fairly constant. Recall,
that the CRAI tends to iterate towards a representative
model of the student. Thus the CRAI will tend to test and
adapt, test and adapt etc, precluding a perfectly constant
setting. For the lowest student it is clear the CRAI
initially sensitively dropped the speed parameter below that
of the other two students. The setting is never raised to
that of the top student, but on the last two appoaches it is
above that of the middle student. We don't have a good
explanation of this result at this time. Considering the
reasonable behavior of the CRAI outside of these two events,
further examination is warranted to determine if they are
artifacts of some atypical circumstances.
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TABLE 11. PLANE SPEED ADAPTATION FOR THREE STUDENTS.

TOP MID LOW
STUDENT STUDENT STUDENT

1.22 1.22 1.22

1.24 1.18 1.02

1.21 1.21 1.15

1.43 1.18 1.32

1.45 1.21 1.37

SUMMARY

We have tested INSTRUCT on a number of critical
dimensions. First, the results indicate that we have
developed a simulated student from a small number of
primitive processes, the behavior of which appears to be
remarkably representative of real students. Second, through
the implementation of a number of basic AI techniques we
have been able to develop a CRAI with the ability to
reasonably determine possible covert causes of errors from
overt responses. In addition, the work suggests that some
useful diagnostic information may be available even from
responses the CRAI can not semantically identify. Fourth,
the CRAI appears to be able to translate its sensitivity to
the students' behavior into reasonable pedagogical
strategies.
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SECTION VI

CONCLUDING REMARKS

Our speculations, ideas and conclusions have taken us
over a wide array of topics and technologies. In attempting
to develop a simulation of a small voice-based trainer, we
were confronted with numerous practical problems that would
send us back to the drawing board from time to time. We
hoped that through the process of designing an intelligent
model of the instructor for voice-based trainers (albeit a
small simulator), certain ideas and technologies could be
identified. By trying specific approaches and making
recommendations, we have attempted to expedite any
subsequent effort to develop and implement an intelligent
instructor model for an automated trainer based on voice
recognition. For that reason, we would like to conclude
with a discussion of our ideas and recommendations regarding
further research, development and enhancements in technology
that would be required in any fully implemented trainer.
First, however, is a review of the ideas that developed
during our current effort.

Our experience with INSTRUCT led us to delineate five
functional areas of the model of an instructor as described
in Section IV. Those functional areas or modules are: the
data-base, the student model, the curriculum driver, the
diagnostics module, and the natural language front-end.
Within each of these areas, we reviewed the functional
needs, some of the existing technology that could be
utilized and our particular set of ideas or approaches.

Our conceptualization of the specific training problems
came from the interviews, observations and literature
reviews reported mainly in Chatfield, et. al. (1979).
These findings led to certain assumptions about the nature
of the types of tasks and requisite information-processing
skills to which voice-based trainers typically might be
applied. These assumptions are discussed in some detail
previously, but will be reviewed here briefly:

1. The tasks, to a great extent, are event-driven,
requiring highly practiced cognitive, verbal and,
in some cases, motor skills.

2. Each response that is made (e.g., an advisory) is
assumed to be the product of a series of
decomposable processes, some of which are
identified in earlier sections.
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3. Each of these processes is assumed to require both
time and resources for execution.

4. The amount of resources and time required for a
process diminishes with practice approaching
automaticity.

5. The rate at which the requirements diminish is
positively related to the amount of resources
invested during practice.

6. Resource allocations can be controlled to some
extent by the student and manipulated by the
system.

From these assumptions, it was reasoned that an error
response might be the result of a deficiency in one or more
of the PROCS in the sequence. However, the error can be
caused by a sudden reallocation of resources to a concurrent
sequence containing one or more deficient PROCS. Finally,
if a training system were to have the diagnostics capability
of identifying deficiencies in individual PROCS, then that
information can be utilized during the generation of
subsequent scenarios.

Our resulting conceptualization of the task led to the
proposed prominence of the diagnostics function. An early
approach to the diagnostics problem regarding processing
skills was to look for error patterns that would reflect
causes. This would have allowed us to identify adaptive
production systems with learning capabilities, which would
accumulate additional error patterns, as one of the AI
technologies. We found, however, that the errors could not
be traced backward to a unique identification of causes with
any degree reliability. The system would generate a
probability distribution over the range of possible causes,
but at times the probability estimates for various causes
were quite close. For this reason, we have identified the
technology behind natural language as one that will be
extremely fruitful for diagnostics purposes, as well as
other uses. The diagnostic ability of the system to
interrogate the student was augmented by the use of
inter-call latency measures that proved useful in the
scenario-generator and adaptive logic. These latency
measures are useful in a PARTS type of task where the
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student is required to respond at a particular rate. This
may not be feasible on other types of tasks. However, the
other training situations may enjoy different opportunities
for diagnostics and adaptive control by being amenable to
the secondary task methodology or possibly the use of
reaction time measures where the onset of an eliciting
stimulus could be identified.

Any recommendations concerning further efforts will
have to include natural language and its use in diagnostics
as well as other functions. Because of its promise, we
believe that the student's capabilities for introspection
and prognostication should be determined empirically. The
system's ability to talk with the student, as a human
instructor would, opens up a new resource of information
that training systems from a wide spectrum of applications
could use.

SUGGESTIONS FOR FURTHER RESEARCH AND DEVELOPMENT

In short, we have advocated that the design of
voice-based training systems be quite different from past
adaptive trainers, CAI-based systems, or even ICAI-based
systems. We have proposed that the training systems for
these event-driven, cognitively-complex tasks, be designed
to intelligently manage the student's resources during
training via verbal instructions, adaptive adjustments, and
appropriate scenario generation.

We have demonstrated that state-of-the-art
psychological theory and AI techniques are sufficiently
developed to allow us to implement a small simulation
package, i.e., INSTRUCT, which successfully incorporates our
theoretical ideas concerning the model of a computer
resident automated instructor in a voice based trainer. We
believe that continued efforts toward the implementation of
a CRAI, along the lines outlined in this report, would be
highly beneficial to Navy training programs. Below, we have
set forth some ideas on areas and directions for future
development efforts.

Future development efforts could take two directions.
First, if a specific training environment is identified as
needing automatization, the specific development effort
could be used as a testbed for additional CRAI development.
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We believe INSTRUCT has demonstrated that we, at least,
currently can begin the implementation process. We
anticipate that task-specific problems will arise (in the
paragraphs below we outline some general areas for future
development that we anticipate will encompass these
problems). However, we also anticipate that these problems
will not be overwhelming. In addition, we believe that the
solutions achieved in a specific development effort will be
generalizable and facilitate CRAI implementation in
additional training environments.

A second direction would be a general development and
testing effort, should it be determined that a candidate
training environment should not be singled out for
experiments in implementation. Below we suggest certain
general areas for additional development that will
facilitate implementation in future specific environments.

We suggest four general areas for further development.
First, is the area of managing student resources during the
training of cognitive skills thereby minimizing training
time (cost) while maximizing terminal proficiency.

Before any production system could be implemented in a
curriculum driver, a contracting firm would need to work
with the subject matter experts (SMEs) in creating an
inventory of: terminal abilities, entering abilities,
knowledge and skill units, scenario contexts (and their
attributes), adaptive variables (and the extent of their
potential adjustment), performance indices, skill
interrelationships (are they independent or competing?),
vocabulary, and human instructors' pedagogical heuristics.

Given this information, a production system would need
to be designed which would allow the intelligence of the
system to explore instructional strategies, beginning with
those known to be effective in training cognitive skills.
We reviewed some of these ideas in Section II and in
Chatfield et al. (1979).

The basic cognition literature also contains
suggestions for training strategies. A good recent source
is the collection of papers presented at the Sixteenth
Annual Carnegie Symposium on Cognition which as edited by
Anderson (1981).
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The human instructors working in the candidate training
areas are an additional source of ideas for initial training
strategies which come from their subjective experiences as
an instructor.

Implementation would require that our curriculum driver
be able to start with training strategies that are at least
reasonably effective for training the skills in question.
It would also be desirable for the curriculum driver to have
the ability to gradually develop more efficient strategies
through the knowledge it gains by interacting with students.

The logic in INSTRUCT is capable of training various
simulations of the student. However, an empirical test,
with real students, has not been attempted. This could be
done during implementation and development of a future
trainer, or tests could be done through modifying an
existing trainer such as the Ground Controlled Approach
Controller Trainer System (GCA-CTS). An experimental
laboratory task which embodies the essential cognitive
demands found in most voice-based trainers could also be
created. Any of these options would give the opportunity
for testing, and further development of the requirements for
a curriculum driver in an intelligent CRAI as outlined in
this report.

A second area for further tests and development would
be that of the diagnostics function and the attending
natural language interface. As was described in Section IV,
INSTRUCT possessed a very limited inference system in
diagnostics and utilized a very crude interrogatory
interface. INSTRUCT still was capable of reasonably
accurate diagnostics. Implementation would require that a
more fully developed inference engine and natural language
interface be adapted for diagnostics use. While this
adaptation could be done during a specific implementation,
much could be done under general development. This effort
would involve the definition of the domain of discourse and
inference. The adaptation could be done by using existing
training domains (such as PARTS) as base line references for
an expanded hypothetical task. This would be an elaboration
of the method used in INSTRUCT. Once the interface and
inference engine were adapted, it would require little
additional effort to modify the data base and make the minor
adjustments required for implementation in a particular
training environment.
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The third recommendation is to explore the student's
introspective capabilities. This can be done by selecting
an actual task, similar to that used in the simulation of
INSTRUCT, which would have the capability for utilizing
diagnostic information in the adaptive functions, scenario
generation and even misconceptions in cognitive structure.
A human instructor could be present to provide the ability
to carry on diagnostic discourse with the student. The
amount of discourse could be varied in amounts from zero to
extensive, and in nature. Unlike our simulated student, the
accuracy of diagnostics could not be determined directly.
Thus, indirect measures, such as performance measures
reflecting learning rates as a result of the use of the
diagnostics, would have to be used. Students would be
expected to provide very useful information during training,
as most anecdotal testimony will corroborate. More
importantly, however, the effort could explore the concept
of student-system discourse in discovering the relevant
techniques and pitfalls of interrogation. A recent review
on the issues and data concerning the use of verbal reports,
interrogation, and introspection is given by Ericsson and
Simon (1980).

A fourth recommendation concerns the creation of
functional specifications for the type of information needed
and the organization required in the implementation of an
intelligent trainer. Before implementation and creation of
any trainer, contractors must investigate the subject matter
and its setting to be able to assemble the needed
information. It would be beneficial if they had a set of
design guides to give direction. When analyzing the tasks
that the students are to master, it would be helpful if they
could refer to the basic processing primitives and how they
relate. Thus, it would be advisable to develop design
guides for the representation of basic cognitive processes
and structure for use in an intelligent system. This would
require a broader and more systematic approach to extend the
initial concepts and ideas identified in INSTRUCT. The
basic research literature and theory, such as Norman and
Shallice (1980), needs to be incorporated into an applied
model of process representation.
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APPENDIX A

TECHNICAL OBJECTIVES AND ACCOMPLISHMENTS

This current project has been targeted at examining the
possibility for enhancing the pedagogical potential of
voice-based training systems through the application of
Artificial Intelligence (AI) theory and technology, as well
as current developments in psychological theory.

Through the implementation of psychological cognitive
theory via basic AI techniques, we have developed a
simulated student whose behavior in a representative
simulated task environment emulates essential features of
real students. Again through the application of basic AI
techniques we also developed a computer resident automated
instructor which showed an ability to determine possible
covert cognitive causes of overt student behavior, and to
act on this knowledge to design individualized curricula.
It is felt that this investigation yielded evidence
supporting the logical sufficiency of the use of AI
techniques for enhancing the pedagogical potential of
voice-based training systems.

We initially proposed to produce:

1. A documented set of routines and techniques.

2. Data summaries on the performance of the routines.

3. References regarding the sources of our ideas.

4. Documentation of the relevant terminology.

5. A systematic explanantion for our rational in
development.

6. Implications and sources of ideas for further
development.

7. A set of research plans as to how the algorithms
and techniques might be implemented and tested in
actual trainers.

We suggested at that time, the we would be "spreading
ourselves thin in attempting to develop several components
in a short time span." Nevertheless, we believe we
accomplished all of the production goals listed. There are
specific section of this report relating to the first six
stated objectives. Information concerning the last
objective can generally be found throughout the report.
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